【題目】已知函數(shù)處取到極值為

1)求函數(shù)的單調(diào)區(qū)間;

2)若不等式上恒成立,求實(shí)數(shù)k的取值范圍.

【答案】1)單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是;(2

【解析】

1)求出函數(shù)的導(dǎo)數(shù),結(jié)合題意得到關(guān)于a,b的方程,求出a,b的值,求出函數(shù)的單調(diào)區(qū)間即可;

2)問題等價(jià)于上恒成立,令,則只需即可,根據(jù)函數(shù)的單調(diào)性判斷求解即可.

解:(1)由已知定義域?yàn)?/span>,

,

,又,得,

,所以,

所以,又

得:x2;由得:x00x2

fx)的單調(diào)遞減區(qū)間是;單調(diào)遞增區(qū)間是.

2)問題等價(jià)于x上恒成立,

,

則只需即可.

所以上單調(diào)遞增,

,

所以有唯一的零點(diǎn)

上單調(diào)遞減,在上單調(diào)遞增.

因?yàn)?/span>,兩邊同時(shí)取自然對(duì)數(shù),則有,

構(gòu)造函數(shù),則,

所以函數(shù)上單調(diào)遞增,

,所以,即

所以,即,

于是實(shí)數(shù)k的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面多邊形中,,,,的中點(diǎn),現(xiàn)將三角形沿折起,使.

(1)證明:平面

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,平面CDEF⊥平面ABCD,且四邊形ABCD為平行四邊形,∠DAB45°,四邊形CDEF為直角梯形,EFDC,EDCDAB3EF3EDa,AD.

1)求證:ADBF

2)若線段CF上存在一點(diǎn)M,滿足AE∥平面BDM,求的值;

3)若a1,求二面角DBCF的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,①已知點(diǎn),直線,動(dòng)點(diǎn)P滿足到點(diǎn)Q的距離與到直線的距離之比為.②已知點(diǎn)是圓上一個(gè)動(dòng)點(diǎn),線段HG的垂直平分線交GEP.③點(diǎn)分別在軸,y軸上運(yùn)動(dòng),且,動(dòng)點(diǎn)P滿足

1)在①,②,③這三個(gè)條件中任選一個(gè),求動(dòng)點(diǎn)P的軌跡C的方程;

(注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分)

2)設(shè)圓上任意一點(diǎn)A處的切線交軌跡CMN兩點(diǎn),試判斷以MN為直徑的圓是否過定點(diǎn)?若過定點(diǎn),求出該定點(diǎn)坐標(biāo).若不過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知xy之間的幾組數(shù)據(jù)如表:

x

1

2

3

4

y

1

m

n

4

如表數(shù)據(jù)中y的平均值為2.5,若某同學(xué)對(duì)m賦了三個(gè)值分別為1.52,2.5,得到三條線性回歸直線方程分別為,,對(duì)應(yīng)的相關(guān)系數(shù)分別為,,下列結(jié)論中錯(cuò)誤的是(

參考公式:線性回歸方程中,其中,.相關(guān)系數(shù)

A.三條回歸直線有共同交點(diǎn)B.相關(guān)系數(shù)中,最大

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,右焦點(diǎn)為,左頂點(diǎn)為A,右頂點(diǎn)B在直線上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)點(diǎn)P是橢圓C上異于A,B的點(diǎn),直線交直線于點(diǎn),當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),判斷以為直徑的圓與直線PF的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為

1)寫出直線和曲線的直角坐標(biāo)方程;

2)過動(dòng)點(diǎn)且平行于的直線交曲線兩點(diǎn),若,求動(dòng)點(diǎn)到直線的最近距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),橢圓的右焦點(diǎn)為,過的直線相交于兩點(diǎn),點(diǎn)滿足.

1)當(dāng)的傾斜角為時(shí),求直線的方程;

2)試探究在軸上是否存在定點(diǎn),使得為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】時(shí)至21世紀(jì).環(huán)境污染已經(jīng)成為世界各國(guó)面臨的一大難題,其中大氣污染是目前城市急需應(yīng)對(duì)的一項(xiàng)課題.某市號(hào)召市民盡量減少開車出行以綠色低碳的出行方式支持節(jié)能減排.原來天天開車上班的王先生積極響應(yīng)政府號(hào)召,準(zhǔn)備每天從騎自行車和開小車兩種出行方式中隨機(jī)選擇一種方式出行.從即日起出行方式選擇規(guī)則如下:第一天選擇騎自行車方式上班,隨后每天用一次性拋擲6枚均勻硬幣的方法確定出行方式,若得到的正面朝上的枚數(shù)小于4,則該天出行方式與前一天相同,否則選擇另一種出行方式.

1)求王先生前三天騎自行車上班的天數(shù)X的分布列;

2)由條件概率我們可以得到概率論中一個(gè)很重要公式——全概率公式.其特殊情況如下:如果事件相互對(duì)立并且,則對(duì)任一事件B.設(shè)表示事件n天王先生上班選擇的是騎自行車出行方式的概率.

①用表示;

②王先生的這種選擇隨機(jī)選擇出行方式有沒有積極響應(yīng)該市政府的號(hào)召,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案