已知
a
+
b
+
c
=
0
,|
a
|=3,|
b
|=5,|
c
|=7
(1)求<
a
,
b
>;
(2)是否存在實數(shù)k,使k
a
+
b
a
-2
b
互相垂直?
分析:(1)由題意可得
a
2
+
b
2
+2
a
b
=49,解得
a
b
的值,從而求得cos<
a
,
b
>=
a
b
|
a
|•|
b
|
的值,可得<
a
,
b
>的值.
(2)由于k
a
+
b
a
-2
b
互相垂直 等價于 (k
a
+
b
)•(
a
-2
b
)=0,由此解得k的值.
解答:解:(1)由于
a
+
b
+
c
=
0
,|
a
+
b
|=|
c
|=7,∴
a
2
+
b
2
+2
a
b
=49,解得 
a
b
=
15
2

故有cos<
a
,
b
>=
a
b
|
a
|•|
b
|
=
1
2

再由<
a
b
>∈[0,π],可得<
a
b
>=
π
3

(2)由于k
a
+
b
a
-2
b
互相垂直 等價于 (k
a
+
b
)•(
a
-2
b
)=k
a
2
-2
b
2
+(1-2k)
a
b
=9k-50+(1-2k)•
15
2
=0,
解得 k=-
85
12
點評:本題主要考查兩個向量的數(shù)量積的定義,兩個向量垂直的性質,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知
a
+
b
+
c
=
0
,|
a
|=3,|
b
|=5,|
c
|=7

(1)求
a
b
的夾角θ的余弦值;
(2)求實數(shù)k,使k
a
+
b
a
-2
b
垂直.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•自貢一模)已知
a
+
b
+
c
=
0
,且
a
c
的夾角為60°,|
b
|=
3
|
a
|,則cos<
a
,
b
等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

分析與綜合法證明不等式:已知a+b+c=0,求證:ab+bc+ca≤0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a+b+c=0,且a、b、c不同時為零,則ab+bc+ca的值的符號為
.(填“正”或“負”)

查看答案和解析>>

同步練習冊答案