如圖,是以為直徑的半圓上異于、的點(diǎn),矩形所在的平面垂直于半圓所在的平面,且.
(1)求證:;
(2)若異面直線和所成的角為,求平面與平面所成的銳二面角的余弦值.
(1)證明過程詳見解析;(2).
解析試題分析:本題主要考查線線垂直、線面垂直、面面垂直、二面角、向量法等基礎(chǔ)知識,考查學(xué)生的空間想象能力、邏輯推理能力和計(jì)算能力.第一問,先利用面面垂直的性質(zhì)得到線面垂直垂直于圓所在的平面,再利用線面垂直的性質(zhì)得到,而在圓內(nèi)AB為直徑,所以,利用線面垂直的判定得平面,最后利用線面垂直的性質(zhì)得到結(jié)論;第二問,利用向量法,先根據(jù)已知條件中的垂直關(guān)系建立空間直角坐標(biāo)系,得到有關(guān)點(diǎn)及向量的坐標(biāo),利用向量法中的公式,求出平面DCE和平面AEB的法向量,再利用夾角公式求夾角的余弦值.
試題解析:(1)∵平面垂直于圓所在的平面,兩平面的交線為,平面,,∴垂直于圓所在的平面.又在圓所在的平面內(nèi),∴.∵是直角,∴,∴平面,∴. 6分
(2)如圖,
以點(diǎn)為坐標(biāo)原點(diǎn),所在的直線為軸,過點(diǎn)與平行的直線為軸,建立空間直角坐標(biāo)系.由異面直線和所成的角為,知,
∴,∴,由題設(shè)可知,,∴,.設(shè)平面的一個(gè)法向量為,
由,得,,取,得.
∴.又平面的一個(gè)法向量為,∴.
平面與平面所成的銳二面角的余弦值. 13分
(其他解法可參考給分)
考點(diǎn):線線垂直、線面垂直、面面垂直、二面角、向量法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐中,直線平面,且
,又點(diǎn),,分別是線段,,的中點(diǎn),且點(diǎn)是線段上的動(dòng)點(diǎn).
證明:直線平面;
(2) 若,求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐中,直線平面,且
,又點(diǎn),,分別是線段,,的中點(diǎn),且點(diǎn)是線段上的動(dòng)點(diǎn).
(1)證明:直線平面;
(2)若,求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如下圖,在四棱柱中,底面和側(cè)面都
是矩形,是的中點(diǎn),,.
(1)求證:
(2)求證:平面;
(3)若平面與平面所成的銳二面角的大小為,求線段的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在邊長為1的等邊三角形ABC中,D,E分別是AB,AC邊上的點(diǎn),AD=AE,F是BC的中點(diǎn),AF與DE交于點(diǎn)G,將沿AF折起,得到如圖所示的三棱錐,其中.
(1) 證明://平面;
(2) 證明:平面;
(3)當(dāng)時(shí),求三棱錐的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱錐中,,,,點(diǎn)在平面內(nèi)的射影恰為的重心,M為側(cè)棱上一動(dòng)點(diǎn).
(1)求證:平面平面;
(2)當(dāng)M為的中點(diǎn)時(shí),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角梯形中,,,,如圖,把沿翻折,使得平面平面.
(1)求證:;
(2)若點(diǎn)為線段中點(diǎn),求點(diǎn)到平面的距離;
(3)在線段上是否存在點(diǎn),使得與平面所成角為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com