(2012•湖南)已知雙曲線C:
x2
a2
-
y2
b2
=1的焦距為10,點P (2,1)在C 的漸近線上,則C的方程為(  )
分析:利用雙曲線C:
x2
a2
-
y2
b2
=1的焦距為10,點P (2,1)在C 的漸近線上,可確定幾何量之間的關(guān)系,由此可求雙曲線的標準方程.
解答:解:雙曲線C:
x2
a2
-
y2
b2
=1的漸近線方程為y=±
b
a
x

∵雙曲線C:
x2
a2
-
y2
b2
=1的焦距為10,點P (2,1)在C 的漸近線上
∴2c=10,a=2b
∵c2=a2+b2
∴a2=20,b2=5
∴C的方程為
x2
20
-
y2
5
=1

故選A.
點評:本題考查雙曲線的標準方程,考查雙曲線的幾何性質(zhì),正確運用雙曲線的幾何性質(zhì)是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•湖南)已知復數(shù)z=(3+i)2(i為虛數(shù)單位),則|
.
z
|=
10
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖南)已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x)≥1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖象上取定點A(x1,f(x1)),B(x2,f(x2))(x1<x2),記直線AB的斜率為K,證明:存在x0∈(x1,x2),使f′(x0)=K恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖南)已知兩條直線l1:y=m 和 l2:y=
8
2m+1
(m>0),l1與函數(shù)y=|log2x|的圖象從左至右相交于點A,B,l2 與函數(shù)y=|log2x|的圖象從左至右相交于點C,D.記線段AC和BD在X軸上的投影長度分別為a,b,當m變化時,
b
a
的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖南)已知函數(shù)f(x)=eax-x,其中a≠0.
(1)若對一切x∈R,f(x)≥1恒成立,求a的取值集合.
(2)在函數(shù)f(x)的圖象上取定兩點A(x1,f(x1)),B(x2,f(x2)(x1<x2),記直線AB的斜率為K,問:是否存在x0∈(x1,x2),使f′(x0)>k成立?若存在,求x0的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案