9.某校運(yùn)動(dòng)會(huì)開幕式上舉行升旗儀式,在坡度為15°的看臺(tái)上,同一列上的第一排和最后一排測(cè)得旗桿頂部的仰角分別為60°和30°,第一排和最后一排的距離為10$\sqrt{6}$m(如圖所示),則旗桿的高度為30m.

分析 作圖,分別求得∠ABC,∠ACB和∠BAC,然后利用正弦定理求得AC,最后在直角三角形ACD中求得AD.

解答 解:如圖,
依題意知∠ABC=30°+15°=45°,∠ACB=180°-60°-15°=105°,
∴∠BAC=180°-45°-105°=30°,
由正弦定理知$\frac{BC}{sin∠BAC}$=$\frac{AC}{sin∠ABC}$,
∴AC=$\frac{BC}{sin∠BAC}$•sin∠ABC=$\frac{10\sqrt{6}}{\frac{1}{2}}$×$\frac{\sqrt{2}}{2}$=20$\sqrt{3}$(m),
在Rt△ACD中,AD=$\frac{\sqrt{3}}{2}$•AC=$\frac{\sqrt{3}}{2}$×20$\sqrt{3}$=30(m),
即旗桿的高度為30m.
故答案為:30m.

點(diǎn)評(píng) 本題主要考查了解三角形的實(shí)際應(yīng)用.結(jié)合了正弦定理等基礎(chǔ)知識(shí),考查了學(xué)生分析和推理的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求證2sinαcosβ=sin(α+β)+sin(α-β).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)(0<y1<y2<…<yn)是曲線C:y2=3x(y≥0)上的n個(gè)點(diǎn),點(diǎn)Ai(ai,0)(i=1,2,3,…,n)在x軸的正半軸上,且△Ai-1AiPi是正三角形(A0是坐標(biāo)原點(diǎn)).
(1)求a1,a2,a3的值,并猜想an的表達(dá)式;
(2)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,且$\overrightarrow{a}$,$\overrightarrow$夾角為120°
(1)求|$\overrightarrow{a}$-2$\overrightarrow$|;
(2)若($\overrightarrow{a}$+2$\overrightarrow$)⊥(k$\overrightarrow{a}$-$\overrightarrow$),求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{x-1}{{e}^{x}},x≥a}\\{-x-1,x<a}\end{array}\right.$,g(x)=f(x)-b,若存在實(shí)數(shù)b,使得函數(shù)g(x)恰有3個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為(-$\frac{1}{{e}^{2}}$-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=ax-x3(a>0且a≠1)在(0,+∞)內(nèi)有兩個(gè)零點(diǎn),則a的取值范圍是(1,e${\;}^{\frac{3}{e}}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=$\left\{\begin{array}{l}{2x-2,x≤1}\\{{x}^{2}-3x+2,x>1}\end{array}\right.$的圖象與函數(shù)g(x)=ln(x+1)的圖象的交點(diǎn)的個(gè)數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.正三棱柱ABC-A′B′C′的底面邊長為1,高為4,在側(cè)棱BB′有不同的兩動(dòng)點(diǎn)M,N,則AM與NC′( 。
A.有可能平行B.有可能垂直C.一定平行D.不一定異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知復(fù)數(shù)Z=$\frac{2+i}{1-2i}$+($\frac{{\sqrt{2}}}{1-i}$)4,則在復(fù)平面內(nèi)復(fù)數(shù)Z對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案