【題目】為了解某班學(xué)生喜好體育運(yùn)動是否與性別有關(guān),對本班60人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

喜好體育運(yùn)動

不喜好體育運(yùn)動

合計(jì)

男生

5

女生

10

合計(jì)

60

已知按喜好體育運(yùn)動與否,采用分層抽樣法抽取容量為12的樣本,則抽到喜好體育運(yùn)動的人數(shù)為7.

1)請將上面的列聯(lián)表補(bǔ)充完整;

2)能否在犯錯誤的概率不超過0.001的前提下認(rèn)為喜好體育運(yùn)動與性別有關(guān)?說明你的理由;

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

【答案】1)列聯(lián)表見解析;(2)能,理由見解析.

【解析】

1)根據(jù)分層抽樣可知喜好體育運(yùn)動的人數(shù)為,其中男生人數(shù)為,則不喜好體育運(yùn)動的人數(shù)為,其中女生人數(shù)為,本班女生人數(shù)為,本班男生人數(shù)為,填表即可.

2)根據(jù)獨(dú)立性檢驗(yàn)的公式,求解,與比較,得出結(jié)論,即可.

1)設(shè)喜好體育運(yùn)動的人數(shù)為人,由已知得解,∴.

列聯(lián)表補(bǔ)充如下:

喜好體育運(yùn)動

不喜好體育運(yùn)動

合計(jì)

男生

25

5

30

女生

10

20

30

合計(jì)

35

25

60

2)∵.

能在犯錯誤的概率不超過0.001的前提下,認(rèn)為喜好體育運(yùn)動與性別有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個圓錐的體積為,當(dāng)這個圓錐的側(cè)面積最小時,其母線與底面所成角的正切值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體中,平面,.,.M的中點(diǎn),P的中點(diǎn),點(diǎn)Q在線段上,且.

1)證明:;

2)若二面角的大小為60°,求的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)為拋物線的焦點(diǎn),過點(diǎn)的直線交拋物線于、兩點(diǎn),點(diǎn)在拋物線上,使得的重心軸上,直線軸于點(diǎn),且在點(diǎn)的右側(cè).、的面積分別、.

1)求的值及拋物線的方程;

2)求的最小值及此時點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)若曲線在點(diǎn)處有相同的切線,求函數(shù)的極值;

2)若,討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)若,判斷函數(shù)的單調(diào)性;

(2)討論函數(shù)的極值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:極坐標(biāo)與參數(shù)方程]

在直角坐標(biāo)系中,曲線的參數(shù)方程為是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(2)若射線 與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取最大值時的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,平面,, .,,,的中點(diǎn).

(Ⅰ)證明:⊥平面;

(Ⅱ)若二面角的余弦值是,求的值;

(Ⅲ)若,在線段上是否存在一點(diǎn),使得. 若存在,確定點(diǎn)的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的頂點(diǎn),邊上的高所在的直線的方程為,中點(diǎn),且所在的直線的方程為.

1)求邊所在的直線方程;

2)求邊所在的直線方程.

查看答案和解析>>

同步練習(xí)冊答案