在各項均為正數(shù)的等比數(shù)列{an}中,a1a2=3,a7a8=6,則a4a5=( 。
A、5
B、6
C、2
3
D、3
2
考點:等比數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:設(shè)等比數(shù)列的公比為q,利用a1a2=3,a7a8=6,可得q6=
2
,從而可求a4a5的值.
解答: 解:設(shè)等比數(shù)列的公比為q,則
∵a1a2=3,a7a8=6,
∴兩式相除,可得q12=2,∴q6=
2
,
∵a1a2=3,
∴a4a5=(a1a2)q6=3
2

故選:D.
點評:本題考查等比數(shù)列的性質(zhì),考查學生的計算能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=e2x,g(x)=lnx+
1
2
,對?a∈R,?b∈(0,+∞),使得f(a)=g(b),則b-a的最小值為( 。
A、1+
1
2
ln2
B、1-
1
2
ln2
C、2
e
-1
D、e2-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ex+e-x
ex-e-x
,下列命題:其中所有正確的命題的序號是(  )
①函數(shù)f(x)的零點為1;
②函數(shù)f(x)的圖象關(guān)于原點對稱;
③函數(shù)f(x)在其定義域內(nèi)是減函數(shù);
④函數(shù)f(x)的值域為(-∞,-1)∪(1,+∞).
A、①②B、②③C、②④D、③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法中,不正確的是( 。
A、點(
π
8
,0)為函數(shù)f(x)=tan(2x+
π
4
)的一個對稱中心
B、設(shè)回歸直線方程為
y
=2-2.5x,當變量x增加一個單位時,y大約減少2.5個單位
C、命題“在△ABC中,若sinA=sin B,則△ABC為等腰三角形”的逆否命題為真命題
D、對于命題p:“
x
x-1
≥0”則¬p“
x
x-1
<0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知為虛數(shù)單位,a為實數(shù),復數(shù)z=(a-2i)(1+i)在復平面內(nèi)對應的點為M,則“a=2”是“點M在坐標軸上”的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦點F作圓x2+y2=
a2
4
的切線,切點為E,延長FE交雙曲線右支點于P,若E為線段PF的中點,則雙曲線的離心率為( 。
A、
10
3
B、
10
2
C、
6
2
D、
6
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={-1,1},N={x|
1
2
<2x<4,x∈Z},則M∩N=( 。
A、{-1,1}B、{1}
C、{0}D、{-1,0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題錯誤的是( 。
A、命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
B、命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”
C、“
a
b
=0”是“
a
=
0
b
=
0
”的必要不充分條件
D、“若am2<bm2,則a<b”的逆命題為真

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)定義域為R,f′(x)存在,且f(-x)=f(x),則f′(0)=( 。
A、2B、1C、0D、-1

查看答案和解析>>

同步練習冊答案