圖1所示的是一個長方體截去一個角所得多面體的直觀圖.圖2是它的主視圖和左視圖(單位:cm).
(1)在主視圖下面按照三視圖的要求畫出該多面體的俯視圖;
(2)按照圖2給出的尺寸,求該多面體的體積;
(3)在圖1中連接B1C,求異面直線EF和B1C所成角的大。ńY(jié)果用反三角函數(shù)表示).
【答案】分析:(1)根據(jù)幾何體的結(jié)構(gòu)特征與它的正(主)視圖和側(cè)(左)視圖可得其側(cè)視圖.
(2)由題意可得:所求多面體體積V=V長方體-V正三棱錐,
(3)在AB上取一點G,使AG=1(BG=4),連接B1G,CG,則∠FB1G=45°,所以B1G∥FE,所以∠CB1G(或其補角)就是異面直線EF和B1C所成的角.在△CB1G中 求解即可.
解答:解:(1)


注:正確作出圖形得(3分),作錯不給分.
(2)(cm3),
所以,該多面體的體積為cm3.…(8分)
(3)由已知,∠B1FE=135°,在AB上取一點G,使AG=1(BG=4),連接B1G,CG,則∠FB1G=45°,所以B1G∥FE,所以∠CB1G(或其補角)就是異面直線EF和B1C所成的角.…(10分)
在△CB1G中,,B1C=GC=5,所以.…(13分)
所以異面直線EF和B1C所成角的大小為.…(14分)
點評:本題考查該多面體的三視圖,多面體的體積的計算,異面直線所成角的大小計算,考查化歸與轉(zhuǎn)化(不規(guī)則幾何體轉(zhuǎn)化為規(guī)則幾何體求體積、空間角轉(zhuǎn)化為平面角)的數(shù)學思想方法,以及空間想象能力、推理論證能力和運算求解能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖所示的三個圖中,左邊的是一個長方體截去一個角所得多面體的直觀圖.它的正視圖和側(cè)視圖在右邊畫出(單位:cm).
(1)在正視圖下面,按照畫三視圖的要求畫出該多面體的俯視圖;
(2)按照給出的尺寸,求該多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如下的三個圖中,左面的是一個長方體截去一個角所得多面體的直觀圖,它的主視圖和左視圖在右面畫出(單位:cm).(1)按照給出的尺寸,求該多面體的體積;(2)在所給直觀圖中連結(jié)BC′,證明:BC′∥面EFG.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•嘉定區(qū)二模)圖1所示的是一個長方體截去一個角所得多面體的直觀圖.圖2是它的主視圖和左視圖(單位:cm).
(1)在主視圖下面按照三視圖的要求畫出該多面體的俯視圖;
(2)按照圖2給出的尺寸,求該多面體的體積;
(3)在圖1中連接B1C,求異面直線EF和B1C所成角的大。ńY(jié)果用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

圖1所示的是一個長方體截去一個角所得多面體的直觀圖.圖2是它的主視圖和左視圖(單位:cm).
(1)在主視圖下面按照三視圖的要求畫出該多面體的俯視圖;
(2)按照圖2給出的尺寸,求該多面體的體積;
(3)在圖1中連接B1C,求異面直線EF和B1C所成角的大。ńY(jié)果用反三角函數(shù)表示).

查看答案和解析>>

同步練習冊答案