畫出不等式組
2x-y+2≤0
x-y+3≥0
y+1≥0
表示的平面區(qū)域,并求z=2x+y的最大值.
分析:作出題中不等式組表示的平面區(qū)域,得如圖的△ABC及其內(nèi)部,再將目標(biāo)函數(shù)z=2x+y對(duì)應(yīng)的直線進(jìn)行平移,可得當(dāng)x=1且y=4時(shí),z取得最大值.
解答:解:作出不等式組
2x-y+2≤0
x-y+3≥0
y+1≥0
表示的平面區(qū)域,

得到如圖的△ABC及其內(nèi)部,其中A(1,4),B(-4,-1),C(-1.5,-1)
設(shè)z=F(x,y)=2x+y,將直線l:z=2x+y進(jìn)行平移,
觀察y軸上的截距變化,可得當(dāng)l經(jīng)過(guò)點(diǎn)B時(shí),目標(biāo)函數(shù)z達(dá)到最大值
∴z最大值=F(1,4)=6.
點(diǎn)評(píng):本題給出二元一次不等式組,求目標(biāo)函數(shù)z=2x+y的最大值,著重考查了二元一次不等式組表示的平面區(qū)域和簡(jiǎn)單的線性規(guī)劃等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

畫出不等式組
2x-y+2≥0
4x+3y-16≤0
y≥0
表示的平面區(qū)域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知非負(fù)實(shí)數(shù)x,y滿足
2x+y-4≤0
x+y-3≤0

(1)在所給坐標(biāo)系中畫出不等式組所表示的平面區(qū)域;
(2)求Z=x+3y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿足不等式組  ,
x-y+5≥0
x+y-1≥0
x≤3
,請(qǐng)完成下列問(wèn)題.
(Ⅰ)在坐標(biāo)平面內(nèi),畫出不等式組所表示的平面區(qū)域;(用陰影表示)
(Ⅱ)求出目標(biāo)函數(shù)z=2x+y的最小值和目標(biāo)函數(shù)z=2x-y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•煙臺(tái)二模)設(shè)非負(fù)實(shí)數(shù)x、y滿足不等式組
2x+y-4≤0
x+y-3≤0

(1)如圖在所給的坐標(biāo)系中,畫出不等式組所表示的平面區(qū)域;
(2)求k=x+3y的取值范圍;
(3)在不等式組所表示的平面區(qū)域內(nèi),求點(diǎn)(x,y)落在x∈[1,2]區(qū)域內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案