【題目】高二年級的一個(gè)研究性學(xué)習(xí)小組在網(wǎng)上查知,某珍貴植物種子在一定條件下發(fā)芽成功的概率為,該研究性學(xué)習(xí)小組又分成兩個(gè)小組進(jìn)行驗(yàn)證性實(shí)驗(yàn).

1)第1組做了5次這種植物種子的發(fā)芽實(shí)驗(yàn)(每次均種下一粒種子),求他們的實(shí)驗(yàn)至少有3次成功的概率;

2)第二小組做了若干次發(fā)芽試驗(yàn)(每次均種下一粒種子),如果在一次實(shí)驗(yàn)中種子發(fā)芽成功就停止實(shí)驗(yàn),否則將繼續(xù)進(jìn)行下次實(shí)驗(yàn),直到種子發(fā)芽成功為止,但發(fā)芽實(shí)驗(yàn)的次數(shù)最多不超過5次,求第二小組所做種子發(fā)芽實(shí)驗(yàn)的次數(shù)的概率分布列和期望.

【答案】1;(2.

【解析】試題分析:(1)由題設(shè)條件知,種下5粒種子至少有3次成功的概率相當(dāng)于5次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)三次、四次、五次的概率.至少有3次成功的概率等于3次、4次、5次發(fā)芽成功的概率之和.(2ξ的所有可能值為01,23,45分別求其概率,列出分布列,再求期望即可.

解:(1)至少有3次發(fā)芽成功,即有3次、4次、5次發(fā)芽成功,所以所求概率

2的概率分布列為

X

1

2

3

4

5

P






所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)為橢圓的左焦點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成一個(gè)等邊三角形,直線與橢圓有且僅有一個(gè)交點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線軸交于,過點(diǎn)的直線與橢圓交于兩不同點(diǎn), ,若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了名觀眾進(jìn)行調(diào)查,其中女性有.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:

將日均收看該體育節(jié)目時(shí)間不低于分鐘的觀眾稱“體育述”,已知“體育迷”中名女性.

(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?

非體育迷

體育迷

合計(jì)

合計(jì)

(2)將日均收看該體育項(xiàng)目不低于分鐘的觀眾稱為“超級體育迷”,已知“超級體育述”中有名女性,若從“超級體育述”中任意選取,求至少有名女性觀眾的概率.

附: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中, 分別是角的對邊,且,若 ,則的面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)當(dāng)時(shí),求不等式的解集;

(Ⅱ)若, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)若,求不等式的解集;

(2)若方程有三個(gè)不同的解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線過點(diǎn),且方向向量為;在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,圓的極坐標(biāo)方程為.

(1)求直線的參數(shù)方程;

(2)若直線與圓相交于、兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, 的導(dǎo)函數(shù).

(1)求的極值;

(2)證明:對任意實(shí)數(shù),都有恒成立;

(3)若時(shí)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)方程有兩個(gè)不等的負(fù)根, 方程無實(shí)根,若“”為真,“”為假,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案