【題目】已知正四棱柱的底面邊長為2,側(cè)棱,為上底面上的動(dòng)點(diǎn),給出下列四個(gè)結(jié)論中正確結(jié)論為(

A.,則滿足條件的點(diǎn)有且只有一個(gè)

B.,則點(diǎn)的軌跡是一段圓弧

C.∥平面,則長的最小值為2

D.∥平面,且,則平面截正四棱柱的外接球所得平面圖形的面積為

【答案】ABD

【解析】

,由于重合時(shí),此時(shí)點(diǎn)唯一;,則,即點(diǎn)的軌跡是一段圓;當(dāng)中點(diǎn)時(shí),DP有最小值為,可判斷C;平面截正四棱柱的外接球所得平面圖形為外接球的大圓,其半徑為,可得D.

如圖:

正四棱柱的底面邊長為2,

,又側(cè)棱,

,則重合時(shí),此時(shí)點(diǎn)唯一,故A正確;

,則,即點(diǎn)的軌跡是一段圓弧,故B正確;

連接,,可得平面平面,則當(dāng)中點(diǎn)時(shí),DP有最小值為,故C錯(cuò)誤;

C知,平面即為平面,平面截正四棱柱的外接球所得平面圖形為外接球的大圓,其半徑為,面積為,故D正確.

故選:ABD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2013年華人數(shù)學(xué)家張益唐證明了孿生素?cái)?shù)猜想的一個(gè)弱化形式。孿生素?cái)?shù)猜想是希爾伯特在1900年提出的23個(gè)問題之一,可以這樣描述:存在無窮多個(gè)素?cái)?shù)p,使得p+2是素?cái)?shù),素?cái)?shù)對(duì)(p,p+2)稱為孿生素?cái)?shù).在不超過30的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其中能夠組成孿生素?cái)?shù)的概率是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形為梯形, ,且, 是邊長為2的正三角形,頂點(diǎn)上的射影為點(diǎn),且, .

(1)證明:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大以來,某貧困地區(qū)扶貧辦積極貫徹落實(shí)國家精準(zhǔn)扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康.經(jīng)過不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進(jìn)步,農(nóng)民年收入也逐年增加.為了制定提升農(nóng)民年收入、實(shí)現(xiàn)2020年脫貧的工作計(jì)劃,該地扶貧辦統(tǒng)計(jì)了201950位農(nóng)民的年收入并制成如下頻率分布直方圖:

1)根據(jù)頻率分布直方圖,估計(jì)50位農(nóng)民的年平均收入元(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示);

2)由頻率分布直方圖,可以認(rèn)為該貧困地區(qū)農(nóng)民年收入X服從正態(tài)分布,其中近似為年平均收入,近似為樣本方差,經(jīng)計(jì)算得,利用該正態(tài)分布,求:

i)在扶貧攻堅(jiān)工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的84.14%的農(nóng)民的年收入高于扶貧辦制定的最低年收入標(biāo)準(zhǔn),則最低年收入大約為多少千元?

ii)為了調(diào)研精準(zhǔn)扶貧,不落一人的政策要求落實(shí)情況,扶貧辦隨機(jī)走訪了1000位農(nóng)民.若每位農(nóng)民的年收入互相獨(dú)立,問:這1000位農(nóng)民中的年收入不少于12.14千元的人數(shù)最有可能是多少?

附參考數(shù)據(jù):,若隨機(jī)變量X服從正態(tài)分布,則,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線(a>0,b>0)的左頂點(diǎn)與拋物線y2=2px(p>0)的焦點(diǎn)的距離為4,且雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點(diǎn)坐標(biāo)為(-2,-1),則雙曲線的焦距為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=exax1e為自然對(duì)數(shù)的底數(shù)),a0

1)若函數(shù)fx)恰有一個(gè)零點(diǎn),證明:aaea1

2)若fx≥0對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓柱的軸截面是邊長為2的正方形,點(diǎn)是圓弧上的一動(dòng)點(diǎn)(不與重合),點(diǎn)是圓弧的中點(diǎn),且點(diǎn)在平面的兩側(cè).

1)證明:平面平面;

2)設(shè)點(diǎn)在平面上的射影為點(diǎn),點(diǎn)分別是的重心,當(dāng)三棱錐體積最大時(shí),回答下列問題.

(。┳C明:平面

(ⅱ)求平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在橢圓上,為右焦點(diǎn),軸,為橢圓上的四個(gè)動(dòng)點(diǎn),且,交于原點(diǎn).

1)判斷直線與橢圓的位置關(guān)系;

2設(shè),滿足,判斷的值是否為定值,若是,請(qǐng)求出此定值,并求出四邊形面積的最大值,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,橢圓的極坐標(biāo)方程為.

1)求直線的普通方程(寫成一般式)和橢圓的直角坐標(biāo)方程(寫成標(biāo)準(zhǔn)方程);

2)若直線與橢圓相交于,兩點(diǎn),且與軸相交于點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊答案