5.正整數(shù)a、b、c是等腰三角形的三邊長,并且a+bc+b+ca=24,則這樣的三角形有( 。
A.1 個B.2 個C.3 個D.4 個

分析 先將a+bc+b+ca=24 可以化為 (a+b)(c+1)=24,然后根據(jù)24分解為大于等于2的兩個正整數(shù)的乘積有幾種組合討論是否符合題意即可得出答案.

解答 解:a+bc+b+ca=24 可以化為 (a+b)(c+1)=24,其中a,b,c都是正整數(shù),并且其中兩個數(shù)相等,
令a+b=A,c+1=C 則A,C為大于或等于2的正整數(shù),
那么24分解為大于等于2的兩個正整數(shù)的乘積有幾種組合2×12,3×8,4×6,6×4,8×3,12×2,
①、A=2,C=12時,c=11,a+b=2,無法得到滿足等腰三角形的整數(shù)解;
②、A=3,C=8時,c=7,a+b=3,無法得到滿足等腰三角形的整數(shù)解;
③、A=4,C=6時,c=5,a+b=4,無法得到滿足等腰三角形的整數(shù)解;
④、A=6,C=4時,c=3,a+b=6,可以得到a=b=c=3,可以組成等腰三角形;
⑤、A=8,C=3時,c=2,a+b=8,可得a=b=4,c=2,可以組成等腰三角形,a=b=4是兩個腰;
⑥、A=12,C=2時,可得 a=b=6,c=1,可以組成等腰三角形,a=b=6是兩個腰.
∴一共有3個這樣的三角形.
故選:C.

點評 本題考查數(shù)的整除性及等腰三角形的知識,難度一般,在解答本題時將原式化為因式相乘的形式及將24分解為大于等于2的兩個正整數(shù)的乘積有幾種組合是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)p:實數(shù)x滿足x2-4ax+3a2<0,其中a>0; q:實數(shù)x滿足$\frac{x-3}{x-2}$<0.
(1)若a=1,且p∨q為真,求實數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知AB為圓O的直徑,M為圓O的弦CD上一動點,AB=8,CD=6,則$\overrightarrow{MA}$•$\overrightarrow{MB}$的取值范圍是[-9,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知角α的終邊經(jīng)過點P,求α的正弦、余弦、正切值.
(1)P(3,4);(2)P(-3,4);
(3)P(0,5);(4)P(2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)過點(2,3),且右焦點為圓C:(x-2)2+y2=2的圓心.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)設(shè)P是橢圓E上在y軸左側(cè)的一點,過點P作圓C的兩條切線,切點分別為A、B,且兩切線的斜率之積為$\frac{1}{2}$,求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知l,m是兩條不同的直線,α,β是兩個不同的平面,則以下結(jié)論正確的是( 。
A.m∥n,m?α,n?β則α∥βB.m∥n,m?α,則n∥α
C.m∥n,m⊥α,n⊥β,則α∥βD.m⊥n,m?α,則m⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列說法正確的是( 。
A.若長方體的長、寬、高各不相同,則長方體的三視圖中不可能有正方形(以長×寬所在的平面為主視面)
B.照片是三視圖中的一種
C.若三視圖中有圓,則原幾何體中一定有球體
D.圓錐的三視圖都是等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知全集U=R,集合A={x|-1<x<1},B={x|x2+2x≤0},則A∩B=( 。
A.(-1,0]B.[-2,1)C.[-2,-1)D.[0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x-2y≥0\\ x+y-3≤0\\ y≥0\end{array}\right.,則(x-2)_{\;}^2+(y+3)_{\;}^2$的最小值為9.

查看答案和解析>>

同步練習(xí)冊答案