【題目】如圖,在四棱柱中,側(cè)棱底面,,,

1)求二面角的正弦值;

2)點(diǎn)是線段的中點(diǎn),點(diǎn)為線段上點(diǎn),若直線與平面所成角的正弦值為,求線段的長(zhǎng).

【答案】1 2

【解析】

1)以為原點(diǎn)建立空間直角坐標(biāo)系,求出各點(diǎn)坐標(biāo),求出平面的法向量,平面的法向量,根據(jù)公式得到兩個(gè)法向量之間的夾角余弦,再求出二面角的正弦值;(2)設(shè),得到,,根據(jù)公式,表示出之間的夾角余弦,即直線和平面所成角的正弦值,從而得到關(guān)于的方程,求出的值,得到線段的長(zhǎng).

1)證明:如圖,以為坐標(biāo)原點(diǎn),以、所在直線分別為、、軸建系,

,,,,,,,,

又因?yàn)?/span>分別為的中點(diǎn),所以.

,,

設(shè)是平面的法向量,

,得,

,得,

設(shè)是平面的法向量,

,得,

,得.

,

設(shè)二面角的平面角為,

所以

所以二面角的正弦值為.

2)由題意可設(shè),其中,∴,,

又因?yàn)?/span>是平面的一個(gè)法向量,

所以,

設(shè)直線和平面所成角為,,

整理,得,

所以,

解得(舍).

所以線段的長(zhǎng)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)將甲、乙、丙、丁四個(gè)人安排到座位號(hào)分別是的四個(gè)座位上,他們分別有以下要求,

甲:我不坐座位號(hào)為的座位;

乙:我不坐座位號(hào)為的座位;

丙:我的要求和乙一樣;

。喝绻也蛔惶(hào)為的座位,我就不坐座位號(hào)為的座位.

那么坐在座位號(hào)為的座位上的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 分別是橢圓的左、右焦點(diǎn),焦距為,動(dòng)弦平行于軸,且.

(1)求橢圓的方程;

(2)過分別作直線交橢圓于,且,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=ax-lnx)(aR).

(Ⅰ)試討論函數(shù)fx)的單調(diào)性;

(Ⅱ)若對(duì)任意x∈(0,+∞),不等式fx)<+x-1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且2的等差中項(xiàng).?dāng)?shù)列中,,點(diǎn)在直線上.

1)求的值;

2)求數(shù)列,的通項(xiàng)公式;

3)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的是(

A.公差為0的等差數(shù)列是等比數(shù)列B.成等比數(shù)列的充要條件是

C.公比的等比數(shù)列是遞減數(shù)列D.成等差數(shù)列的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心在軸上,且經(jīng)過點(diǎn).

1)求圓的標(biāo)準(zhǔn)方程;

2)過點(diǎn)的直線與圓相交于兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,F1、F2是橢圓C1y2=1與雙曲線C2的公共焦點(diǎn),A、B分別是C1、C2在第二、四象限的公共點(diǎn).若四邊形AF1BF2為矩形,則C2的離心率是___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列五個(gè)命題:①直線的斜率,則直線的傾斜角的范圍是;②直線與過,兩點(diǎn)的線段相交,則;③如果實(shí)數(shù),滿足方程,那么的最大值為;④直線與橢圓恒有公共點(diǎn),則的取值范圍是;⑤方程表示圓的充要條件是;正確的是(

A.②③B.③④C.②⑤D.②③⑤

查看答案和解析>>

同步練習(xí)冊(cè)答案