log24-log2
1
2
+log 
2
2=
 
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用對數(shù)的性質(zhì)和運算法則求解.
解答: 解:log24-log2
1
2
+log 
2
2
=2-(-1)+2
=5.
故答案為:5.
點評:本題考查對數(shù)式的求值,解題時要認(rèn)真審題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知在棱長為1的正方體ABCD-A1B1C1D1中,E、F、M分別是A1C1,A1D和B1A上任一點,求證:平面A1EF∥平面B1MC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

隨機地向半圓0<y<
2ax-x2
(a為正常數(shù))內(nèi)擲一點,點落在半圓內(nèi)任何區(qū)域的概率與區(qū)域的面積成正比,則原點與該點的連線與x軸的夾角小于
π
4
的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義方程f(x)=f′(x)的實數(shù)根x0叫做函數(shù)f(x)的“新駐點”,若函數(shù)g(x)=2x,h(x)=lnx,φ(x)=x3(x≠0)的“新駐點”分別為a、b、c,則a、b、c由大到小排列為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過兩條直線2x+y-8=0和x-2y+1=0的交點,且在兩坐標(biāo)軸上的截距相等的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a2=4,a5=0,則a8=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α,β為銳角,cosα=
1
10
,cosβ=
1
5
,則cos(α+β)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

式子(
x
+
1
3x
n的展開式中第4項為常數(shù)項,且常數(shù)項為T,則:
(T+1)π
(T+
1
2
sinxdx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,S為△ABC的面積,若滿足4S=a2+b2-c2,則角C=( 。
A、
π
4
B、
3
4
π
C、
π
3
D、
π
6

查看答案和解析>>

同步練習(xí)冊答案