已知函數(shù)
(1)求的解集;
(2)設函數(shù),若對任意的都成立,求的取值范圍.

(1);(2).

解析試題分析:本題主要考查絕對值不等式的解法、分段函數(shù)圖象、直線圖象等基礎知識,考查學生的轉(zhuǎn)化能力、計算能力和數(shù)形結(jié)合思想.第一問,先將被開方數(shù)寫成完全平方式,開方需要加絕對值,解絕對值不等式,利用零點分段法去掉絕對值符號,解不等式組;第二問,“對任意的都成立”轉(zhuǎn)化為“的圖象恒在圖象的上方”利用零點分段法將絕對值去掉,轉(zhuǎn)化成分段函數(shù),畫出分段函數(shù)圖象,而恒過(3,0)點,將的直線繞(3,0)點旋轉(zhuǎn),找出符合題意的位置,得到k的取值范圍.
試題解析:(1)

① 或② 或
解得不等式①:;②:無解 ③:
所以的解集為.   5分
(2)的圖象恒在圖象的上方

圖象為恒過定點,且斜率變化的一條直線作函數(shù)圖象如圖,

其中,∴
由圖可知,要使得的圖象恒在圖象的上方
∴實數(shù)的取值范圍為.          10分
考點:絕對值不等式的解法、分段函數(shù)圖象、直線圖象.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)萬件,需另投入的成本為(單位:萬元),當年產(chǎn)量小于80萬件時,;當年產(chǎn)量不小于80萬件時,.假設每萬件該產(chǎn)品的售價為50萬元,且該廠當年生產(chǎn)的該產(chǎn)品能全部銷售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬件)的函數(shù)關(guān)系式;
(2)年產(chǎn)量為多少萬件時,該廠在該產(chǎn)品的生產(chǎn)中所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知.
(1)當,時,若不等式恒成立,求的范圍;
(2)試判斷函數(shù)內(nèi)零點的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=xk+b(其中k,b∈R且k,b為常數(shù))的圖象經(jīng)過A(4,2)、B(16,4)兩點.
(1)求f(x)的解析式;
(2)如果函數(shù)g(x)與f(x)的圖象關(guān)于直線y=x對稱,解關(guān)于x的不等式:g(x)+g(x-2)>2a(x-2)+4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù)的二次項系數(shù)為,且不等式的解集為(1,3).
⑴若方程有兩個相等實數(shù)根,求的解析式.
⑵若的最大值為正數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)為偶函數(shù).
(1)求的值;
(2)若方程有且只有一個根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)在區(qū)間上的最小值;
(2)設,其中,判斷方程在區(qū)間 上的解的個數(shù)(其中為無理數(shù),約等于且有).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

據(jù)市場分析,廣饒縣馳中集團某蔬菜加工點,當月產(chǎn)量在10噸至25噸時,月生產(chǎn)總成本(萬元)可以看成月產(chǎn)量(噸)的二次函數(shù).當月產(chǎn)量為10噸時,月總成本為20萬元;當月產(chǎn)量為15噸時,月總成本最低為17.5萬元.
(1)寫出月總成本(萬元)關(guān)于月產(chǎn)量(噸)的函數(shù)關(guān)系;
(2)已知該產(chǎn)品銷售價為每噸1.6萬元,那么月產(chǎn)量為多少時,可獲最大利潤;
(3)當月產(chǎn)量為多少噸時, 每噸平均成本最低,最低成本是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)f(x)=-ax2,a∈R.
(1)當a=2時,求函數(shù)f(x)的零點;
(2)當a>0時,求證:函數(shù)f(x)在(0,+∞)內(nèi)有且僅有一個零點;
(3)若函數(shù)f(x)有四個不同的零點,求a的取值范圍.

查看答案和解析>>

同步練習冊答案