【題目】如圖,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,極坐標(biāo)系中,弧所在圓的圓心分別為,曲線是弧,曲線是弧,曲線是弧,曲線是弧.
(1)分別寫(xiě)出的極坐標(biāo)方程;
(2)直線的參數(shù)方程為(為參數(shù)),點(diǎn)的直角坐標(biāo)為,若直線與曲線有兩個(gè)不同交點(diǎn),求實(shí)數(shù)的取值范圍,并求出的取值范圍.
【答案】(1);;;,或(2),
【解析】
(1)設(shè)弧上任意一點(diǎn)
根據(jù)ABCD是邊長(zhǎng)為2的正方形,AB所在的圓與原點(diǎn)相切,其半徑為1,求得,同理求得其他弧所對(duì)應(yīng)的極坐標(biāo)方程.
(2)把直線的參數(shù)方程和的極坐標(biāo)方程都化為直角坐標(biāo)方程,利用數(shù)形結(jié)合求解,把直線的參數(shù)方程化為直線的標(biāo)準(zhǔn)參數(shù)方程,直角坐標(biāo)方程聯(lián)立,再利用參數(shù)的幾何意義求解.
(1)如圖所示:
設(shè)弧上任意一點(diǎn)
因?yàn)?/span>ABCD是邊長(zhǎng)為2的正方形,AB所在的圓與原點(diǎn)相切,其半徑為1,
所以
所以的極坐標(biāo)方程為;
同理可得:的極坐標(biāo)方程為;
的極坐標(biāo)方程為;
的極坐標(biāo)方程為,或
(2)因?yàn)橹本的參數(shù)方程為
所以消去t得,過(guò)定點(diǎn),
直角坐標(biāo)方程為
如圖所示:
因?yàn)橹本與曲線有兩個(gè)不同交點(diǎn),
所以
因?yàn)橹本的標(biāo)準(zhǔn)參數(shù)方程為,代入直角坐標(biāo)方程
得
令
所以
所以
所以的取值范圍是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如表是我國(guó)某城市在2017年1月份至10月份個(gè)月最低溫與最高溫()的數(shù)據(jù)一覽表.
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
最高溫 | 5 | 9 | 9 | 11 | 17 | 24 | 27 | 30 | 31 | 21 |
最低溫 |
已知該城市的各月最低溫與最高溫具有相關(guān)關(guān)系,根據(jù)這一覽表,則下列結(jié)論錯(cuò)誤的是( )
A.最低溫與最高位為正相關(guān)
B.每月最高溫和最低溫的平均值在前8個(gè)月逐月增加
C.月溫差(最高溫減最低溫)的最大值出現(xiàn)在1月
D.1月至4月的月溫差(最高溫減最低溫)相對(duì)于7月至10月,波動(dòng)性更大
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=-x2+ef′()x.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若存在x1,x2(x1<x2),使得f(x1)+f(x2)=1,求證:x1+x2<2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為滿足人們的閱讀需求,圖書(shū)館設(shè)立了無(wú)人值守的自助閱讀區(qū),提倡人們?cè)陂喿x后將圖書(shū)分類(lèi)放回相應(yīng)區(qū)域.現(xiàn)隨機(jī)抽取了某閱讀區(qū)500本圖書(shū)的分類(lèi)歸還情況,數(shù)據(jù)統(tǒng)計(jì)如下(單位:本).
文學(xué)類(lèi)專(zhuān)欄 | 科普類(lèi)專(zhuān)欄 | 其他類(lèi)專(zhuān)欄 | |
文學(xué)類(lèi)圖書(shū) | 100 | 40 | 10 |
科普類(lèi)圖書(shū) | 30 | 200 | 30 |
其他圖書(shū) | 20 | 10 | 60 |
(1)根據(jù)統(tǒng)計(jì)數(shù)據(jù)估計(jì)文學(xué)類(lèi)圖書(shū)分類(lèi)正確的概率;
(2)根據(jù)統(tǒng)計(jì)數(shù)據(jù)估計(jì)圖書(shū)分類(lèi)錯(cuò)誤的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,定義為兩點(diǎn),的“切比雪夫距離”,又設(shè)點(diǎn)及上任意一點(diǎn),稱(chēng)的最小值為點(diǎn)到直線的“切比雪夫距離”,記作,給出下列三個(gè)命題:
①對(duì)任意三點(diǎn)、、,都有;
②已知點(diǎn)和直線:,則;
③到定點(diǎn)的距離和到的“切比雪夫距離”相等的點(diǎn)的軌跡是正方形.
其中正確的命題有( )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,分別為橢圓的左右焦點(diǎn),點(diǎn)為橢圓上的一動(dòng)點(diǎn),面積的最大值為2.
(1)求橢圓的方程;
(2)直線與橢圓的另一個(gè)交點(diǎn)為,點(diǎn),證明:直線與直線關(guān)于軸對(duì)稱(chēng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】金秋九月,丹桂飄香,某高校迎來(lái)了一大批優(yōu)秀的學(xué)生.新生接待其實(shí)也是和社會(huì)溝通的一個(gè)平臺(tái).校團(tuán)委、學(xué)生會(huì)從在校學(xué)生中隨機(jī)抽取了160名學(xué)生,對(duì)是否愿意投入到新生接待工作進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:
愿意 | 不愿意 | |
男生 | 60 | 20 |
女士 | 40 | 40 |
(1)根據(jù)上表說(shuō)明,能否有99%把握認(rèn)為愿意參加新生接待工作與性別有關(guān);
(2)現(xiàn)從參與問(wèn)卷調(diào)查且愿意參加新生接待工作的學(xué)生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機(jī)選取3人到火車(chē)站迎接新生,設(shè)選取的3人中女生人數(shù)為,寫(xiě)出的分布列,并求.
附:,其中.
0.05 | 0.01 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面,底面為直角梯形,,∥,,,,,分別為線段,,的中點(diǎn).
(1)證明:平面∥平面.
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足: , , .
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,且滿足,試確定的值,使得數(shù)列為等差數(shù)列;
(3)將數(shù)列中的部分項(xiàng)按原來(lái)順序構(gòu)成新數(shù)列,且,求證:存在無(wú)數(shù)個(gè)滿足條件的無(wú)窮等比數(shù)列.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com