已知橢圓C的中心在原點,焦點在x軸上.若橢圓上的點A(1,
3
2
)
到焦點F1、F2的距離之和等于4.
(1)寫出橢圓C的方程和焦點坐標.
(2)過點Q(1,0)的直線與橢圓交于兩點M、N,當△OMN的面積取得最大值時,求直線MN的方程.
(1)設(shè)橢圓的方程為
x2
a2
+
y2
b2
=1
(a>b>0)
∵橢圓上的點A(1,
3
2
)
到焦點F1、F2的距離之和等于4,
2a=4
1
a2
+
3
4
b2
=1
,
∴a=2,b=1
∴c=
a2-b2
=
3

∴橢圓C的方程為
x2
4
+y2=1
,焦點坐標為(-
3
,0)
,(
3
,0)

(2)MN斜率不為0,設(shè)MN方程為x=my+1.
聯(lián)立橢圓方程:
x2
4
+y2=1
可得(m2+4)y2+2my-3=0
記M、N縱坐標分別為y1、y2,
S△OMN=
1
2
|OQ|×|y1-y2|=
1
2
×1×
16m2+48
m2+4
=
2
m2+3
m2+4

設(shè)t=
m2+3
(t≥3)

S=
2t
t2+1
=
2
t+
1
t
(t≥
3
)
,該式在[
3
,+∞)
單調(diào)遞減,
∴在t=
3
,即m=0時S取最大值
3
2

綜上,直線MN的方程為x=1.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,M是拋物線y2=x上的一個定點,動弦ME、MF分別與x軸交于不同的點A、B,且|MA|=|MB|.證明:直線EF的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
,過右焦點F且斜率為
2
的直線l交橢圓E于兩點A,B,若以原點為圓心,
6
3
為半徑的圓與直線l相切
(1)求焦點F的坐標;
(2)以O(shè)A,OB為鄰邊的平行四邊形OACB中,頂點C也在橢圓E上,求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

附加題:已知半橢圓
x2
a2
+
y2
b2
=1(x≥0)
與半橢圓
y2
b2
+
x2
c2
=1(x≤0)
組成的曲線稱為“果圓”,其中a2=b2+c2,a>b>c>0,F(xiàn)0、F1、F2是對應(yīng)的焦點.
(1)(文)若三角形F0F1F2是邊長為1的等邊三角形,求“果圓”的方程.
(2)(理)當|A1A2|>|B1B2|時,求
b
a
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線C1:x2=2py(p>0)的焦點為F,橢圓C2
x2
a2
+
y2
b2
=1
(a>b>0)的離心率e=
3
2
,C1與C2在第一象限的交點為P(
3
,
1
2

(1)求拋物線C1及橢圓C2的方程;
(2)已知直線l:y=kx+t(k≠0,t>0)與橢圓C2交于不同兩點A、B,點M滿足
AM
+
BM
=
0
,直線FM的斜率為k1,試證明k•k1
-1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)點P在曲線y=x2上,從原點向A(2,4)移動,如果直線OP,曲線y=x2及直線x=2所圍成的面積分別記為S1、S2
(Ⅰ)當S1=S2時,求點P的坐標;
(Ⅱ)當S1+S2有最小值時,求點P的坐標和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知兩條拋物線y1=x2+2mx+4,y2=x2+mx-m中至少有一條與x軸有公共點,則實數(shù)m的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線y=x-2與拋物線y2=4x交于A、B兩點,則|AB|的值為(  )
A.2
6
B.4
6
C.2
3
D.4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線y=k(x+2)與雙曲線
x2
m
-
y2
8
=1,有如下信息:聯(lián)立方程組:
y=k(x+2)
x2
m
-
y2
8
=1
消去y后得到方程Ax2+Bx+C=0,分類討論:
(1)當A=0時,該方程恒有一解;
(2)當A≠0時,△=B2-4AC≥0恒成立.在滿足所提供信息的前提下,雙曲線離心率的取值范圍是( 。
A.(1,
3
]
B.[
3
,+∞)
C.(1,2]D.[2,+∞)

查看答案和解析>>

同步練習冊答案