1.數(shù)列{an}的前n項和為Sn=4n2-n+2,則該數(shù)列的通項公式為( 。
A.an=8n+5(n∈N*B.an=$\left\{\begin{array}{l}5(n=1)\\ 8n-5(n≥2,n∈{N^*})\end{array}\right.$
C.an=8n+5(n≥2)D.an=8n+5(n≥1)

分析 Sn=4n2-n+2,n=1時,a1=S1.n≥2時,an=Sn-Sn-1,即可得出.

解答 解:∵Sn=4n2-n+2,∴n=1時,a1=S1=4-1+2=5.
n≥2時,an=Sn-Sn-1=4n2-n+2-[4(n-1)2-(n-1)+2]=8n-5.
∴該數(shù)列的通項公式為an=$\left\{\begin{array}{l}{5,n=1}\\{8n-5,n≥2}\end{array}\right.$(n∈N*).
故選:B.

點評 本題考查了數(shù)列遞推關(guān)系、數(shù)列的通項公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知M(-$\sqrt{3}$b,0),N($\sqrt{3}$b,0)(b>0),P是曲線C上的動點,直線PM的斜率與直線PN的斜率的積為-$\frac{1}{3}$.
(1)求曲線C的方程;
(2)直線l:y=x-$\sqrt{2}$b與曲線C相交于A、B,設(shè)O為坐標系原點,$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,證明:λ22是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x|x2-3x+2<0},B={x|2x>4},則( 。
A.A⊆BB.B⊆AC.A∩∁RB=RD.A∩B=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知sinα=$\frac{2}{3}$,則sin(2α-$\frac{π}{2}$)=( 。
A.-$\frac{\sqrt{5}}{3}$B.-$\frac{1}{9}$C.$\frac{1}{9}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y+1≥0}\\{x-2y-1≤0}\\{x+y≤1}\end{array}\right.$,則|3x+4y-7|的最大值是14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2acos2x+bsinxcosx-$\frac{\sqrt{3}}{2}$,且f(0)=$\frac{\sqrt{3}}{2}$,f($\frac{π}{4}$)=$\frac{1}{2}$,
(1)求a、b的值;
(2)化簡函數(shù)f(x)的解析式;
(3)寫出f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)數(shù)列{an}是首項為1公比為2的等比數(shù)列前n項和Sn,若log4(Sk+1)=4,則k=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.各項均為正數(shù)的數(shù)列{xn}對一切n∈Nx均滿足xn+$\frac{1}{{x}_{n+1}}$<2.證明:
(1)xn<xn+1
(2)1-$\frac{1}{n}$<xn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知$\frac{1+2i}{a+bi}$=2-i(i為虛數(shù)單位,a,b∈R),在|a-bi|=( 。
A.-iB.1C.2D.$\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊答案