【題目】設(shè)橢圓的右焦點(diǎn)為,右頂點(diǎn)為.已知,其中為原點(diǎn), 為橢圓的離心率.
(1)求橢圓的方程及離心率的值;
(2)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)(不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn).若,且,求直線的斜率的取值范圍.
【答案】(1)橢圓的方程為. ;(2)
【解析】試題分析:(1)由橢圓方程可知,由已知得,∴,平方得,所以,又因?yàn)?/span>,∴,解得,所以,因此.所以,橢圓的方程為. . (2)因?yàn)橹本過點(diǎn),設(shè)直線的斜率為,由點(diǎn)斜式得直線的方程為,設(shè),把直線的方程為與橢圓方程聯(lián)立消去,得,因?yàn)?/span>2與點(diǎn)B的橫坐標(biāo)是此方程的兩個根,用根于系數(shù)的關(guān)系得,代入直線的方程從而得. 由,得,設(shè),求兩向量的坐標(biāo)。由(1)知, ,得向量坐標(biāo), . 所以,解得.因?yàn)橹本與直線垂直,所以直線的斜率為,由直線的斜截式得直線的方程為.聯(lián)立直線的方程與直線的方程,設(shè),可解得點(diǎn)M的橫坐標(biāo),在中,由大邊對大角得,由兩點(diǎn)間的距離公式得,化簡得,即,解不等式可得,或.
試題解析:解:(1)設(shè),∵ ,∴ ,
又,∴ , ,∴ ,
所以,因此.
所以,橢圓的方程為. .
(2)解:設(shè)直線的斜率為,則直線的方程為,設(shè),
由方程組,消去,得,
解得,或,由題意得,從而.
由(1)知, ,設(shè),有, .
由,得,所以,解得.因此直線的方程為.
設(shè),由方程組,消去,解得,在中, ,即,化簡得,即,解得,或.
所以,直線的斜率的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+bx2的圖象經(jīng)過點(diǎn)M(1,4),曲線在點(diǎn)M處的切線恰好與直線x+9y=0垂直.
(1)求實(shí)數(shù)a,b的值;
(2)若函數(shù)f(x)在區(qū)間[m,m+1]上單調(diào)遞增,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在(﹣1,1)上的奇函數(shù) 是增函數(shù),且 .
(1)求函數(shù)f(x)的解析式;
(2)解不等式f(t﹣1)+f(2t)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將自然數(shù)按如下規(guī)則“放置”在平面直角坐標(biāo)系中,使其滿足條件:①每個自然數(shù)“放置”在一個“整點(diǎn)”(橫縱坐標(biāo)均為整數(shù)的點(diǎn))上;②0在原點(diǎn),1在(0,1)點(diǎn),2在(1,1)點(diǎn),3在(1,0)點(diǎn),4在(1,﹣1)點(diǎn),5在(0,﹣1)點(diǎn),…,即所有自然數(shù)按順時針“纏繞”在以“0”為中心的“樁”上,則放置數(shù)字(2n+1)2 , n∈N*的整點(diǎn)坐標(biāo)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測驗(yàn)中,有6位同學(xué)的平均成績?yōu)?5分.用xn表示編號為n(n=1,2,…,6)的同學(xué)所得成績,且前5位同學(xué)的成績?nèi)缦拢?
編號n | 1 | 2 | 3 | 4 | 5 |
成績xn | 70 | 76 | 72 | 70 | 72 |
(1)求第6位同學(xué)的成績x6 , 及這6位同學(xué)成績的標(biāo)準(zhǔn)差s;
(2)從前5位同學(xué)中,隨機(jī)地選2位同學(xué),求恰有1位同學(xué)成績在區(qū)間(68,75)中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若不等式ax2+5x﹣2>0的解集是{x| <x<2},
(1)求a的值;
(2)求不等式ax2+5x+a2﹣1>0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)椋?,+∞)的函數(shù)f(x)滿足:(1)對任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)當(dāng)x∈(1,2]時,f(x)=2﹣x. 給出如下結(jié)論:
①對任意m∈Z,有f(2m)=0;
②函數(shù)f(x)的值域?yàn)閇0,+∞);
③存在n∈Z,使得f(2n+1)=9;
正確的有( )
A.①②③
B.①②
C.①③
D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=x2+ex﹣ (x<0)與g(x)=x2+ln(x+a)圖象上存在關(guān)于y軸對稱的點(diǎn),則a的取值范圍是( )
A.(﹣ )
B.( )
C.( )
D.( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com