(2013•濟寧一模)已知函數(shù)f(x)=lnx-
a
x

(Ⅰ)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
(Ⅱ)若f(x)在[1,e]上的最小值為
3
2
,求a的值;
(Ⅲ)若f(x)<x2在(1,+∞)上恒成立,求a的取值范圍.
分析:(I)先確定函數(shù)f(x)的定義域,再求導(dǎo)函數(shù),從而可判定f(x)在定義域內(nèi)的單調(diào)性;
(II)由(I)可知,f′(x)=
x+a
x2
.再分類討論:a≥-1,f(x)在[1,e]上為增函數(shù);a≤-e,f(x)在[1,e]上為減函數(shù);e<a<-1,f(x)在(1,-a)上為減函數(shù),f(x)在(-a,e)上為增函數(shù),利用f(x)在[1,e]上的最小值為
3
2
,可求a的值;
(III)先將不等式整理,再分離參數(shù),構(gòu)建新函數(shù),利用單調(diào)性求出函數(shù)值的范圍,即可求出a的取值范圍.
解答:解:(I)由題意f(x)的定義域為(0,+∞),且f'(x)=
1
x
+
a
x2
=
x+a
x2
…(2分)
∵a>0,
∴f'(x)>0,
故f(x)在(0,+∞)上是單調(diào)遞增函數(shù)      …(4分)
(II)由(I)可知,f′(x)=
x+a
x2

(1)若a≥-1,則x+a≥0,即f′(x)≥0在[1,e]上恒成立,此時f(x)在[1,e]上為增函數(shù),
∴[f(x)]min=f(1)=-a=
3
2
,
∴a=-
3
2
(舍去) …(5分)
(2)若a≤-e,則x+a≤0,即f′(x)≤0在[1,e]上恒成立,此時f(x)在[1,e]上為減函數(shù),
∴[f(x)]min=f(e)=1-
a
e
=
3
2
⇒a=-
e
2
(舍去)…(6分)
(3)若-e<a<-1,令f'(x)=0得x=-a,當1<x<-a時,f'(x)<0,
∴f(x)在(1,-a)上為減函數(shù),f(x)在(-a,e)上為增函數(shù),
∴[f(x)]min=f(-a)=ln(-a)+1=
3
2
⇒a=-
e

∴[f(x)]min=f(-a)=ln(-a)+1=
3
2

∴a=-
e
.…(8分)
綜上所述,a=-
e

(III)∵f(x)<x2
∴l(xiāng)nx-
a
x
x2

又x>0,∴a>xlnx-x3…(9分)
令g(x)=xlnx-x3,h(x)=g′(x)=1+lnx-3x2,
∴h'(x)=
1
x
-6x=
1-6x2
x
∵x∈(1,+∞)時,h'(x)<0,
∴h(x)在(1,+∞)上是減函數(shù),…(10分)
∴h(x)<h(1)=-2<0
即g'(x)<0∴g(x)在(1,+∞)上也是減函數(shù),
∴g(x)在(1,+∞)上是減函數(shù)
∴g(x)<g(1)=-1
∴當a≥-1時,f(x)<x2在(1,+∞)上恒成立.…(12分)
∴a≥-1
點評:本題重點考查函數(shù)的單調(diào)性,考查函數(shù)的最值,考查恒成立問題,解題的關(guān)鍵是運用導(dǎo)數(shù),確定函數(shù)的單調(diào)性,運用分離參數(shù)法求解恒成立問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濟寧一模)若函數(shù)f(x)=sin(ωx+
π
3
)的圖象向右平移
π
3
個單位后與原函數(shù)的圖象關(guān)于x軸對稱,則ω的最小正值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濟寧一模)點M、N分別是正方體ABCD-A1B1C1D1的棱A1B1、A1D1中點,用過A、M、N和D、N、C1的兩個截面截去正方體的兩個角后得到的幾何體如圖1,則該幾何體的正視圖、側(cè)視圖(左視圖)、俯視圖依次為圖2中的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濟寧一模)已知等差數(shù)列{an}中,a3+a5=32,a7-a3=8,則此數(shù)列的前10項和S10=
190
190

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濟寧一模)已知i是虛數(shù)單位,則-1+(
1+i
2
)2
在復(fù)平面內(nèi)對應(yīng)的點位于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濟寧一模)設(shè)集合A={-1,0,a},B={x|0<x<1},若A∩B≠∅,則實數(shù)a的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊答案