【題目】在△ABC中,角A,B,C對應邊分別是a,b,c,c=2,sin2A+sin2B﹣sin2C=sinAsinB.
(1)若sinC+sin(B﹣A)=2sin2A,求△ABC面積;
(2)求AB邊上的中線長的取值范圍.
【答案】
(1)解:由sin2A+sin2B﹣sin2C=sinAsinB,利用正弦定理化簡得:a2+b2﹣c2=ab,
∴cosC= = = ,即C= ,
∵sinC+sin(B﹣A)=sin(B+A)+sin(B﹣A)=2sin2A,
∴sinBcosA=2sinAcosA,
當cosA=0,即A= ,此時S△ABC= ;
當cosA≠0,得到sinB=2sinA,利用正弦定理得:b=2a,此時此時S△ABC= ;
(2)∵ = ,
∴|CD|2= = ,
∵cosC= ,c=2,
∴由余弦定理得:c2=a2+b2﹣2abcosC,即a2+b2﹣ab=4,
∴|CD|2= = >1,且|CD|2= ≤3,
則|CD|的范圍為(1, ].
【解析】(1)已知等式利用正弦定理化簡,再利用余弦定理表示出cosC,將得出關系式代入求出cosC的值,確定出C的度數(shù),sinC+sin(B﹣A)=2sin2A化簡后,根據(jù)cosA為0與cosA不為0兩種情況,分別求出三角形ABC面積即可;(2)根據(jù)CD為AB邊上的中線,得到 = ,兩邊平方并利用平面向量的數(shù)量積運算法則變形得到關系式,利用余弦定理列出關系式,將cosC與c的值代入得到關系式,代入計算即可確定出|CD|的范圍.
【考點精析】關于本題考查的正弦定理的定義和余弦定理的定義,需要了解正弦定理:;余弦定理:;;才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱中, , , 分別為棱的中點.
(1)在平面內(nèi)過點作平面交于點,并寫出作圖步驟,但不要求證明.
(2)若側面側面,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列每組函數(shù)是同一函數(shù)的是( )
A.f(x)=x0與f(x)=1
B.f(x)= ﹣1與f(x)=|x|﹣1
C.f(x)= 與f(x)=x﹣2
D.f(x)= 與f(x)=
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若無窮數(shù)列滿足:恒等于常數(shù),則稱具有局部等差數(shù)列.
(1)若具有局部等差數(shù)列,且,求;
(2)若無窮數(shù)列是等差數(shù)列,無窮數(shù)列是公比為正數(shù)的等比數(shù)列,,,,判斷是否具有局部等差數(shù)列,并說明理由;
(3)設既具有局部等差數(shù)列,又具有局部等差數(shù)列,求證:具有局部等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《中國詩詞大會》是中央電視臺最近新推出的一檔有重大影響力的大型電視文化節(jié)目,今年兩會期間,教育部部長陳寶生答記者問時給予其高度評價;谶@樣的背景,山東某中學積極響應,也舉行了一次詩詞競賽。組委會在競賽后,從中抽取了100名選手的成績(百分制),作為樣本進行統(tǒng)計,作出了圖中的頻率分布直方圖,分析后將得分不低于60分的學生稱為“詩詞達人”,低于60分的學生稱為“詩詞待加強者”.
(Ⅰ)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否在犯錯誤的概率不超過0.01的前提下認為“詩詞達人”與性別有關?
詩詞待加強者 | 詩詞達人 | 合計 | |
男 | 15 | ||
女 | 45 | ||
合計 |
(Ⅱ)將頻率視為概率,現(xiàn)在從該校大量參與活動的學生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“詩詞達人”的人數(shù)為,若每次抽取的結果是相互獨立的,求的分布列、數(shù)學期望和方差.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 “中國人均讀書4.3本(包括網(wǎng)絡文學和教科書),比韓國的11本、法國的20本、日本的40本、猶太人的64本少得多,是世界上人均讀書最少的國家!边@個論斷被各種媒體反復引用。出現(xiàn)這樣的統(tǒng)計結果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國傳統(tǒng)文明古國、禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動,準備購進一定量的書籍豐富小區(qū)圖書站,由于年齡段不同需看不同類型的書籍,為了合理配備資源,對小區(qū)內(nèi)看書人員進行了年齡的調(diào)查,隨機抽取了一天中名讀書者進行調(diào)查,將他們的年齡分成6段:,,,,,后得到如圖所示的頻率分布直方圖.問:
(Ⅰ)求40名讀書者中年齡分布在的人數(shù);
(Ⅱ)求40名讀書者年齡的眾數(shù)和中位數(shù)的估計值;(用各組區(qū)間中點值作代表)
(Ⅲ)若從年齡在的讀書者中任取2名,求這兩名讀書者中年齡在恰有1人的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在銳角△ABC中,a、b、c分別為角A、B、C所對的邊,且 =2csinA
(1)確定角C的大;
(2)若c= ,且△ABC的面積為 ,求a+b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列關于回歸分析的說法中錯誤的是( )
A. 回歸直線一定過樣本中心
B. 殘差圖中殘差點比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型比較合適
C. 兩個模型中殘差平方和越小的模型擬合的效果越好
D. 甲、乙兩個模型的分別約為0.98和0.80,則模型乙的擬合效果更好
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com