(本小題滿分12分)已知函數(shù).
(Ⅰ)求滿足時的的集合;
(Ⅱ)當時,求函數(shù)的最值.
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù).
(Ⅰ)寫出函數(shù)的最小正周期及單調(diào)遞減區(qū)間;
(Ⅱ)當時,函數(shù)的最大值與最小值的和為,求的解析式;
(Ⅲ)將滿足(Ⅱ)的函數(shù)的圖像向右平移個單位,縱坐標不變橫坐標變?yōu)樵瓉淼?
倍,再向下平移,得到函數(shù),求圖像與軸的正半軸、直線所圍成圖形的
面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)在一個周期內(nèi)的圖象下圖所示。
(1)求函數(shù)的解析式;
(2)設(shè),且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍和這兩個根的和。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)(其中,,)的最大值為2,最小正周
期為.
(1)求函數(shù)的解析式;
(2)若函數(shù)圖象上的兩點的橫坐標依次為,為坐標原點,求△ 的
面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知最小正周期為
(1).求函數(shù)的單調(diào)遞增區(qū)間及對稱中心坐標
(2).求函數(shù)在區(qū)間上的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知向量,,函數(shù).
(1)求函數(shù)的最小正周期和單調(diào)增區(qū)間;
(2)在中,分別是角的對邊,R為外接圓的半徑,且,,,且,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com