19.已知△ABC內(nèi)接于單位圓,且△ABC面積為$\frac{1}{2}$,則長(zhǎng)為sinA,sinB,sinC的三條線段構(gòu)成的三角形的面積為$\frac{1}{8}$.

分析 設(shè)△ABC的三邊分別為a,b,c利用正弦定理可得a=2sinA,b=2sinB,c=2sinC,利用面積為原來(lái)三角形面積$\frac{1}{4}$,可得長(zhǎng)為sinA,sinB,sinC的三條線段構(gòu)成的三角形的面積為$\frac{1}{8}$.

解答 解:設(shè)△ABC的三邊分別為a,b,c
利用正弦定理可得a=2sinA,b=2sinB,c=2sinC
∵a,b,c為三角形的三邊
∴sinA,sinB,sinC也能構(gòu)成三角形的邊,面積為原來(lái)三角形面積$\frac{1}{4}$,
∴長(zhǎng)為sinA,sinB,sinC的三條線段構(gòu)成的三角形的面積為$\frac{1}{8}$.
故答案為:$\frac{1}{8}$.

點(diǎn)評(píng) 本題主要考查了正弦定理的變形形式a=2RsinA,b=2RsinB,c=2RsinC(R為三角形外接圓的半徑)的應(yīng)用,屬于中檔試題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知三個(gè)對(duì)數(shù)函數(shù):y=logax,y=logbx,y=logcx,它們分別對(duì)應(yīng)如圖中標(biāo)號(hào)為①②③三個(gè)圖象  則a、b、c的大小關(guān)系是( 。
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=lnx+$\frac{x+1}({b>0})$,對(duì)任意x1,x2∈[1,2],x1≠x2,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$<-1,則實(shí)數(shù)b的取值范圍是$({\frac{27}{2},+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知g(x)是定義在R上的奇函數(shù),若函數(shù)f(x)=$\frac{2|x|+g(x)+2}{|x|+1}$(x∈R)有最大值為M,最小值為m,則M+m=( 。
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)集合M={x||x|<2},N={-1,1},則集合∁MN中整數(shù)的個(gè)數(shù)為( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知拋物線x2=4y上一點(diǎn)M到焦點(diǎn)的距離為3,則點(diǎn)M到x軸的距離為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知數(shù)列{an}的前項(xiàng)和為Sn,Sn=1+tan(t≠1且t≠0,n∈N*)
(1)求證:數(shù)列{an}是等比數(shù)列
(2)若$\lim_{n→∞}$Sn=1,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知曲線f(x)=xsinx+1在點(diǎn)(${\frac{π}{2}$,${\frac{π}{2}$+1)處的切線與直線ax-y+1=0互相垂直,則實(shí)數(shù)a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知兩個(gè)函數(shù)f(x)和g(x)的定義域和值域都是集合{1,2,3},其函數(shù)對(duì)應(yīng)關(guān)系如表:
x123
f(x)231
x123
g(x)321
則方程g(f(3))=3.

查看答案和解析>>

同步練習(xí)冊(cè)答案