(12分)某大學(xué)開設(shè)甲、乙、丙三門選修課,學(xué)生是否選修哪門課互不影響. 已知學(xué)生小張只選甲的概率為,只選修甲和乙的概率是,至少選修一門的概率是,用表示小張選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積.

(Ⅰ)求學(xué)生小張選修甲的概率;

(Ⅱ)記“函數(shù) 為上的偶函數(shù)”為事件,求事件的概率;

(Ⅲ)求的分布列和數(shù)學(xué)期望;

 

【答案】

解:(Ⅰ)設(shè)學(xué)生小張選修甲、乙、丙的概率分別為、;依題意得

——4分,

所以學(xué)生小張選修甲的概率為0.4——5分

(Ⅱ)若函數(shù)上的偶函數(shù),則=0                 …………6分

  

事件的概率為!9分

(Ⅲ)依題意知,  ————10分,

的分布列為

 

0

2

P

 

的數(shù)學(xué)期望為 …………12分

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

 (本小題滿分12分)[來(lái)源:學(xué)科網(wǎng)]

某大學(xué)經(jīng)濟(jì)管理學(xué)院上學(xué)期開設(shè)了《概率論與數(shù)理統(tǒng)計(jì)》,該學(xué)院共有2000名學(xué)生修習(xí)了這門課程,且學(xué)生的考試成績(jī)?nèi)亢细?答卷存檔),其中優(yōu)秀、良好、合格三個(gè)等級(jí)的男、女學(xué)生人數(shù)如下表,但優(yōu)秀等級(jí)的男、女學(xué)生人數(shù)缺失,分別用x、y代替.

優(yōu)秀

良好

合格

男生人數(shù)

x

370

377

女生人數(shù)

y

380

373[來(lái)源:Zxxk.Com]

(Ⅰ)若用分層抽樣法在所有2000份學(xué)生答卷中隨機(jī)抽取60份答卷進(jìn)行比較分析,求在優(yōu)秀等級(jí)的學(xué)生中應(yīng)抽取多少份答卷?

(Ⅱ)若x≥245,y≥245,求優(yōu)秀等級(jí)的學(xué)生中女生人數(shù)比男生人數(shù)多的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

某大學(xué)經(jīng)濟(jì)管理學(xué)院上學(xué)期開設(shè)了《概率論與數(shù)理統(tǒng)計(jì)》,該學(xué)院共有2000名學(xué)生修習(xí)了這門課程,且學(xué)生的考試成績(jī)?nèi)亢细?答卷存檔),其中優(yōu)秀、良好、合格三個(gè)等級(jí)的男、女學(xué)生人數(shù)如下表,但優(yōu)秀等級(jí)的男、女學(xué)生人數(shù)缺失,分別用x、y代替

優(yōu)秀

良好

合格

男生人數(shù)

X

370

377

女生人數(shù)

       Y    

380

373

(1)若用分層抽樣法在所有2000份學(xué)生答卷中隨機(jī)抽取60份答卷進(jìn)行比較分析,求在優(yōu)秀等級(jí)的學(xué)生中應(yīng)抽取多少份答卷?

(2)若x≥245,y≥245,求優(yōu)秀等級(jí)的學(xué)生中女生人數(shù)比男生人數(shù)多的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

某大學(xué)開設(shè)甲、乙、丙三門選修課,學(xué)生是否選修哪門課互不影響. 已知某學(xué)生選修甲而不選修乙和丙的概率為0.08,選修甲和乙而不選修丙的概率是0.12,至少選修一門的概率是0.88,用表示該學(xué)生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積.

  (Ⅰ)記“函數(shù)R上的偶函數(shù)”為事件A,求事件A的概率;

(Ⅱ)求的分布列和數(shù)學(xué)期望.    

查看答案和解析>>

同步練習(xí)冊(cè)答案