分析 (1)直接利用向量共線的坐標(biāo)運(yùn)算求得tanx值;
(2)寫出數(shù)量積,再由輔助角公式化積,由x的范圍求得相位的范圍,則f(x)的最值可求.
解答 解:(1)∵$\overrightarrow{m}$=(sin(x-$\frac{π}{3}$),1),$\overrightarrow{n}$=(cosx,1),且$\overrightarrow{m}$∥$\overrightarrow{n}$,
∴$sin(x-\frac{π}{3})=cosx$,即$\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=cosx$,則tanx=$\sqrt{3}+2$;
(2)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$=$sin(x-\frac{π}{3})cosx+1=\frac{1}{2}sin(2x-\frac{π}{3})+1-\frac{\sqrt{3}}{4}$,
∵x∈[0,$\frac{π}{2}$],∴2x-$\frac{π}{3}$∈[-$\frac{π}{3},\frac{2π}{3}$],
則f(x)∈[$1-\frac{\sqrt{3}}{2},1+\frac{\sqrt{3}}{2}$],
∴f(x)的最大值為$1-\frac{\sqrt{3}}{2}$,最小值為1+$\frac{\sqrt{3}}{2}$.
點(diǎn)評 本題考查平面向量的數(shù)量積運(yùn)算,考查了三角函數(shù)中的恒等變換應(yīng)用,考查y=Asin(ωx+φ)型函數(shù)的圖象和性質(zhì),是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 81 | B. | 54 | C. | 45 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | [2,+∞) | C. | (1,2) | D. | (1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{5}$ | B. | 2 | C. | 6 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | (-∞,0) | C. | (-∞,0),(0,+∞) | D. | (-∞,0)∪(0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com