如圖,AB是圓O的直徑,C,D是圓O上兩點(diǎn),AC與BD相交于點(diǎn)E,GC,GD是圓O的切線,點(diǎn)F在DG的延長線上,且.求證:(1)D、E、C、F四點(diǎn)共圓;(2).
(1)證明過程詳見解析;(2)證明過程詳見解析.
解析試題分析:本題主要以圓為幾何背景考查四點(diǎn)共圓問題,線線垂直的證明,考查學(xué)生的轉(zhuǎn)化與化歸能力.第一問,利用切線的性質(zhì)得出,,利用圓心角和圓周角的關(guān)系得出,,通過角之間轉(zhuǎn)化得出,所以四點(diǎn)共圓;第二問,通過邊長相等,確定四點(diǎn)所在圓的圓心為,利用半徑相等得出在等腰三角形,所以,通過角之間的轉(zhuǎn)化,證出,所以.
試題解析:(Ⅰ)如圖,連結(jié),,則,,
設(shè),,,
,.
所以. …3分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/06/e/hrfxx1.png" style="vertical-align:middle;" />,所以.
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/da/9/13sfd2.png" style="vertical-align:middle;" />,
所以,所以四點(diǎn)共圓. …5分
(Ⅱ)延長交于.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2c/6/tmkpr1.png" style="vertical-align:middle;" />,所以點(diǎn)是經(jīng)過四點(diǎn)的圓的圓心.
所以,所以. …8分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/be/9/ddwez.png" style="vertical-align:middle;" />,,
所以,所以,
所以,即. …10分
考點(diǎn):1.切線的性質(zhì);2.圓心角與圓周角的關(guān)系;3.四點(diǎn)共圓的判定.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知AB是⊙O的直徑,C為圓上任意一點(diǎn),過C的切線分別與過A、B兩點(diǎn)的切線交于P、Q.
求證:AB2=4AP·BQ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,C是以AB為直徑的半圓O上的一點(diǎn),過C的直線交直線AB于E,交過A點(diǎn)的切線于D,BC∥OD.
(Ⅰ)求證:DE是圓O的切線;
(Ⅱ)如果AD=AB=2,求EB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,為△外接圓的切線,的延長線交直線于點(diǎn),分別為弦與弦上的點(diǎn),且,四點(diǎn)共圓.
(Ⅰ)證明:是△外接圓的直徑;
(Ⅱ)若,求過四點(diǎn)的圓的面積與△外接圓面積的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于點(diǎn)D,E、F分別為弦AB與弦AC上的點(diǎn),
且BCAE=DCAF,B、E、F、C四點(diǎn)共圓.
(Ⅰ)證明:CA是△ABC外接圓的直徑;
(Ⅱ)若DB=BE=EA,求過B、E、F、C四點(diǎn)的圓的面積與△ABC外接圓面積的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,圓O的直徑AB=4,C為圓周上一點(diǎn),BC=2,過C作圓O的切線l,過A作l的垂線AD,AD分別與直線l、圓O交于點(diǎn)D,E,求線段AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com