【題目】定義max{a,b}表示實數(shù)a,b中的較大的數(shù).已知數(shù)列{an}滿足a1=a(a>0),a2=1,an+2= (n∈N),若a2015=4a,記數(shù)列{an}的前n項和為Sn , 則S2015的值為

【答案】7254
【解析】解:當0<a<2時,
∵a1=a(a>0),a2=1,
an+2= (n∈N),
∴a3= 2max{1,2}= >2,
a4=2max{ ,2}= ,
a5= 2max{ ,2}=4,
a6= 2max{4,2}=a,
a7= 2max{a,2}=1,
a8= 2max{1,2}=

∴數(shù)列{an}是以5為周期的周期數(shù)列,
∵2015=403×5,
∴a2015=a5=4=4a,
解得a=1,
∴S2015=403(a+1+ )=403(1+1+4+8+4)=7254;
當a≥2時,
∵a1=a(a>0),a2=1,
an+2= (n∈N),
∴a3= 2max{1,2}= <2,
a4=2max{ ,2}=4,
a5= 2max{4,2}=2a≥4,
a6= 2max{2a,2}=a>2,
a7= 2max{a,2}=1,
a8= 2max{1,2}=

∴數(shù)列{an}是以5為周期的周期數(shù)列,
∵2015=403×5,
∴a2015=a5=2a=4a,解得a=0,不合題意.
所以答案是:7254.
【考點精析】通過靈活運用數(shù)列的通項公式,掌握如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直線l:3x-y-1=0上求點P和Q,使得

(1)點P到點A(4,1)和B(0,4)的距離之差最大;

(2)點Q到點A(4,1)和C(3,4)的距離之和最。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,CA=CD= AB=1, =1,sin∠BCD=

(1)求BC的長;
(2)求四邊形ABCD的面積;
(3)求sinD的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=﹣ x3+ x2﹣2x(a∈R)
(1)當a=3時,求函數(shù)f(x)的單調區(qū)間;
(2)若對于任意x∈[1,+∞)都有f′(x)<2(a﹣1)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓與直線相切于點,且經(jīng)過點,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】10四面體ABCD及其三視圖如圖所示,平行于棱AD,BC的平面分別交四面體的棱AB,BD,DC,CA于點E,FG,H

1求四面體ABCD的體積

2證明四邊形EFGH是矩形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓過定點 ,且與定直線相切,動圓圓心的軌跡方程為,直線過點交曲線兩點.

1)若軸于點的取值范圍;

(2)若的傾斜角為,上是否存在點使為正三角形?若能,求點的坐標;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的方程為ρsin(θ+ )= ,圓C的方程為 (θ為參數(shù)).
(1)把直線l和圓C的方程化為普通方程;
(2)求圓C上的點到直線l距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓C: + =1(a>b>0)的離心率是 ,且過點( , ).設點A1 , B1分別是橢圓的右頂點和上頂點,如圖所示過 點A1 , B1引橢圓C的兩條弦A1E、B1F.

(1)求橢圓C的方程;
(2)若直線A1E與B1F的斜率是互為相反數(shù).
①求直線EF的斜率k0②設直線EF的方程為y=k0x+b(﹣1≤b≤1)設△A1EF、△B1EF的面積分別為S1和S2 , 求S1+S2的取值范圍.

查看答案和解析>>

同步練習冊答案