數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an+1-an-1=0,數(shù)列{bn}滿足b1=2,anbn+1=2an+1bn.
(1)求S;
(2)求bn.
(1)20 100(2)bn=n·2n
(1)∵an+1-an-1=0,∴an+1-an=1.
∴數(shù)列{an}是以a1=1為首項(xiàng),d=1為公差的等差數(shù)列.
∴S=200×1+×1="20" 100.
(2)由(1)得an=n,∴nbn+1=2(n+1)bn.∴=2·.
是以=2為首項(xiàng),q=2為公比的等比數(shù)列.
=2×2n-1.∴bn=n·2n.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

定義數(shù)列如下:
證明:(1)當(dāng)時(shí),恒有成立;
(2)當(dāng)時(shí),有成立;
(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

8.設(shè)數(shù)列{an}是公差為-2的等差數(shù)列,如果a1+a4+a7+…+a97=50,那么a3+a6+a9+…+a99的值是(    )
A.-82B.-78C.-148D.-182

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)列定義如下:,且當(dāng)時(shí),  
已知,求正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知Sn是數(shù)列{an}的前n項(xiàng)和,且an=Sn-1+2(n≥2),a1=2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=,Tn=bn+1+bn+2+…+b2n,是否存在最大的正整數(shù)k,使得對(duì)于任意的正整數(shù)n,有Tn恒成立?若存在,求出k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

含2n+1項(xiàng)的等差數(shù)列,其奇數(shù)項(xiàng)的和與偶數(shù)項(xiàng)的和之比為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某林場(chǎng)有荒山3 250畝,每年春季在荒山上植樹造林,第一年植樹100畝,計(jì)劃每年比上一年多植樹50畝(全部成活)
(1)問(wèn)需要幾年,可將此山全部綠化完?
(2)已知新種樹苗每畝的木材量是2立方米,樹木每年自然增長(zhǎng)率為10%,設(shè)荒山全部綠化后的年底的木材總量為S.求S約為多少萬(wàn)立方米?(精確到0.1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在數(shù)列{an}中,a1=2,2an+1=2an+1,則a101的值為(    )
A.49B.50C.51D.52

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列{an}中,若ap=q2,aq=p2(p≠q),則ap+q等于(    )
A.0B.q-pC.p+qD.-pq

查看答案和解析>>

同步練習(xí)冊(cè)答案