如圖,在長方體ABCD-A1B1C1D1中,AB=BC=2,AA1=1,則異面直線AC1與BB1所成的角為(  )
A.a(chǎn)rctan
2
2
3
B.a(chǎn)rccos
2
2
3
C.a(chǎn)rcsin
1
3
D.a(chǎn)rctan2
2

因?yàn)殚L方體ABCD-A1B1C1D1中,AA1BB1,
∴∠A1AC1為異面直線異面AC1與BB1所成的角,
∵AA1⊥A1C1
∴△A1AC1為直角三角形,
∵AB=BC=2,
∴A1C1=2
2
,
∴tan∠A1AC1=
A1C1
AA1
=2
2
,
∴∴∠A1AC1=arctan2
2
,
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二面角,,,四邊形為矩形,,,且,依次是,的中點(diǎn).
(1)  求二面角的大;
(2)  求證:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,將Rt△ABC沿斜邊上的高AD折成1200的二面角C-AD-,若直角邊AB=,AC=,則二面角A-B-D的正切值為(   )
A.B.
C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖∠BAC=90°,等腰直角三角形ABC所在的平面與正方形ABDE所在的平面互相垂直,則異面直線AD與BC所成角的大小是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在正方體ABCD-A1B1C1D1中,O為底面ABCD的中心,E為C1C的中點(diǎn),則異面直線D1A與EO所成角的余弦值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,三棱錐P-ABC中,PA⊥平面ABC,△ABC是等邊三角形,E是BC中點(diǎn),若PA=AB,則異面直線PE與AB所成角的余弦值( 。
A.
3
7
14
B.
21
6
C.
5
10
D.
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,已知PA⊥平面ABCD,PB與平面ABC成60°的角,底面ABCD是直角梯形,∠ABC=∠BAD=90°,AB=BC=
1
2
AD.
(1)求證:平面PCD⊥平面PAC;
(2)設(shè)E是棱PD上一點(diǎn),且PE=
1
3
PD,求異面直線AE與PB所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知正三棱柱ABC-A1B1C1的底面邊長為8,側(cè)棱長為6,D為AC中點(diǎn).
(1)求證:AB1平面C1DB;
(2)求異面直線AB1與BC1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直三棱柱ABC-A1B1C1,AC⊥BC,且CA=CC1=2CB,則直線BC1與直線AB1所成角的余弦值為( 。
A.
5
5
B.
5
3
C.
2
5
5
D.
3
5

查看答案和解析>>

同步練習(xí)冊答案