【題目】已知

(1)討論的單調(diào)性;

(2)若存在及唯一正整數(shù),使得,求的取值范圍.

【答案】(1)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是;(2) 的取值范圍是.

【解析】試題分析

(1)求出函數(shù)的導(dǎo)函數(shù),通過對(duì)導(dǎo)函數(shù)符號(hào)的討論可得函數(shù)的單調(diào)性.(2)由題意得函數(shù)上的值域?yàn)?/span>.結(jié)合題意可將問題轉(zhuǎn)化為當(dāng)時(shí),滿足的正整數(shù)解只有1個(gè).通過討論的單調(diào)性可得只需滿足,由此可得所求范圍.

試題解析:

(1)由題意知函數(shù)的定義域?yàn)?/span>

因?yàn)?/span>,

所以,

,則,

所以當(dāng)時(shí), 是增函數(shù),

故當(dāng)時(shí), 單調(diào)遞減,

當(dāng)時(shí), 單調(diào)遞增.

所以上單調(diào)遞減,在上單調(diào)遞增.

(2)由(1)知當(dāng)時(shí), 取得最小值,

,

所以上的值域?yàn)?/span>

因?yàn)榇嬖?/span>及唯一正整數(shù),使得,

所以滿足的正整數(shù)解只有1個(gè).

因?yàn)?/span>

所以,

所以上單調(diào)遞增,在上單調(diào)遞減,

所以,即,

解得

所以實(shí)數(shù)的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線PA,PB分別與半徑為1的圓O相切于點(diǎn)A,B,PO=2, .若點(diǎn)M在圓O的內(nèi)部(不包括邊界),則實(shí)數(shù)λ的取值范圍是(
A.(﹣1,1)
B.
C.
D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求證:對(duì)任何a>0,b>0,c>0,都

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),.

(1)求函數(shù)的解析式;

(2)解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是 ( )

①相關(guān)系數(shù)用來衡量?jī)蓚(gè)變量之間線性關(guān)系的強(qiáng)弱越接近于,相關(guān)性越弱;

②回歸直線一定經(jīng)過樣本點(diǎn)的中心;

③隨機(jī)誤差滿足,其方差的大小用來衡量預(yù)報(bào)的精確度;

④相關(guān)指數(shù)用來刻畫回歸的效果, 越小,說明模型的擬合效果越好.

A. ①② B. ③④ C. ①④ D. ②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年6月14日,第二十一屆世界杯足球賽將在俄羅斯拉開帷幕.為了了解喜愛足球運(yùn)動(dòng)是否與性別有關(guān),某體育臺(tái)隨機(jī)抽取100名觀眾進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表.

(1)將列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為喜愛足球運(yùn)動(dòng)與性別有關(guān)?

(2)在不喜愛足球運(yùn)動(dòng)的觀眾中,按性別分別用分層抽樣的方式抽取6人,再從這6人中隨機(jī)抽取2人參加一臺(tái)訪談節(jié)目,求這2人至少有一位男性的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某零售店近5個(gè)月的銷售額和利潤額資料如下表:

商店名稱

銷售額/千萬元

3

5

6

7

9

利潤額/百萬元

2

3

3

4

5

(1)畫出散點(diǎn)圖.觀察散點(diǎn)圖,說明兩個(gè)變量有怎樣的相關(guān)關(guān)系;

(2)用最小二乘法計(jì)算利潤額關(guān)于銷售額的回歸直線方程;

(3)當(dāng)銷售額為4千萬元時(shí),利用(2)的結(jié)論估計(jì)該零售店的利潤額(百萬元).

[參考公式:,]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓C: =1(a>b>0)的離心率為 ,過右焦點(diǎn)F2(c,0)垂直于x軸的直線與橢圓交于A,B兩點(diǎn)且|AB|= ,又過左焦點(diǎn)F1(﹣c,0)任作直線l交橢圓于點(diǎn)M
(1)求橢圓C的方程
(2)橢圓C上兩點(diǎn)A,B關(guān)于直線l對(duì)稱,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的參數(shù)方程為 (φ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系. (Ⅰ)求曲線C的極坐標(biāo)方程;
(Ⅱ)已知傾斜角為135°且過點(diǎn)P(1,2)的直線l與曲線C交于M,N兩點(diǎn),求 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案