【題目】已知函數(shù).

1)求的極值;

2)證明:時(shí),

3)若函數(shù)有且只有三個(gè)不同的零點(diǎn),分別記為,設(shè)的最大值是,證明:

【答案】(Ⅰ)見(jiàn)解析(Ⅱ)見(jiàn)解析(Ⅲ)見(jiàn)解析

【解析】

(Ⅰ)先求導(dǎo)數(shù),再根據(jù)討論導(dǎo)函數(shù)零點(diǎn)情況,最后根據(jù)導(dǎo)函數(shù)零點(diǎn)以及導(dǎo)函數(shù)符號(hào)變化規(guī)律確定極值,(Ⅱ)作差函數(shù),先利用導(dǎo)數(shù)研究導(dǎo)函數(shù)單調(diào)性,確定導(dǎo)函數(shù)零點(diǎn),再根據(jù)導(dǎo)函數(shù)符號(hào)確定函數(shù)最小值,最后根據(jù)基本不等式證得結(jié)論,(Ⅲ)先利用導(dǎo)數(shù)研究有兩個(gè)零點(diǎn)時(shí),其兩個(gè)零點(diǎn)對(duì)應(yīng)區(qū)間,再令,根據(jù)條件用表示,利用導(dǎo)數(shù)求其最大值,即得結(jié)論.

(Ⅰ)函數(shù)的定義域?yàn)?/span>.

由已知可得

(1)當(dāng)時(shí),,故在區(qū)間上單調(diào)遞增; 無(wú)極值.

(2)當(dāng)時(shí),由解得;,解得所以函數(shù)上單調(diào)遞增,在上單調(diào)遞減. 的極大值為,無(wú)極小值.

)證明:令,故只需證明.

因?yàn)?/span>

所以函數(shù)上為增函數(shù),且

上有唯一實(shí)數(shù)根,且

當(dāng)時(shí),,當(dāng)時(shí),,

從而當(dāng)時(shí),取得最小值.

,得,,

,

因?yàn)?/span>,所以等于號(hào)取不到,即

綜上,當(dāng)時(shí),

)∵ 函數(shù)有且只有三個(gè)不同的零點(diǎn),是其零點(diǎn),

∴ 函數(shù)存在兩個(gè)零點(diǎn)(不等于),即有兩個(gè)不等且不等于的實(shí)數(shù)根

可轉(zhuǎn)化為方程在區(qū)間上有兩個(gè)不等且不等于的實(shí)數(shù)根,

即函數(shù)的圖象與函數(shù)的圖象有兩個(gè)交點(diǎn).

,解得,故在上單調(diào)遞增;

,解得,故上單調(diào)遞減;

故函數(shù)的圖象與的圖象的交點(diǎn)分別在,上,

的兩個(gè)根分別在區(qū)間,上,

的三個(gè)不同的零點(diǎn)分別是,且.

,則

解得, .-,

,則

所以在區(qū)間上單調(diào)遞增,即

所以在區(qū)間上單調(diào)遞增,

,

所以,即,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中,正確的序號(hào)是( 。

b2”“1b,4成等比數(shù)列的充要條件;

雙曲線(xiàn)與橢圓有共同焦點(diǎn)是真命題;

③若命題p∨¬q為假命題,則q為真命題;

④命題pxRx2x+10的否定是:xR,使得x2x+1≤0

A.①②B.②③④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中, 橢圓的中心在坐標(biāo)原點(diǎn),其右焦點(diǎn)為,且點(diǎn) 在橢圓上.

(1)求橢圓的方程;

(2)設(shè)橢圓的左、右頂點(diǎn)分別為是橢圓上異于的任意一點(diǎn),直線(xiàn)交橢圓于另一點(diǎn),直線(xiàn)交直線(xiàn)點(diǎn), 求證:三點(diǎn)在同一條直線(xiàn)上

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸入的,則輸出的

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方程的曲線(xiàn)是圓

1)求實(shí)數(shù)的取值范圍;

2)若直線(xiàn)與圓相交于、兩點(diǎn),且為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的值;

3)當(dāng)時(shí),設(shè)為直線(xiàn)上的動(dòng)點(diǎn),過(guò)作圓的兩條切線(xiàn)、,切點(diǎn)分別為、,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn),過(guò)定點(diǎn)作不垂直于x軸的直線(xiàn),交拋物線(xiàn)于A,B兩點(diǎn).

1)設(shè)O為坐標(biāo)原點(diǎn),求證:為定值;

2)設(shè)線(xiàn)段的垂直分線(xiàn)與x軸交于點(diǎn),求n的取值范圍;

3)設(shè)點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為D,求證:直線(xiàn)過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)營(yíng)銷(xiāo)人員進(jìn)行某商品M市場(chǎng)營(yíng)銷(xiāo)調(diào)查發(fā)現(xiàn),每回饋消費(fèi)者一定的點(diǎn)數(shù),該商品每天的銷(xiāo)量就會(huì)發(fā)生一定的變化,經(jīng)過(guò)試點(diǎn)統(tǒng)計(jì)得到以如表:

反饋點(diǎn)數(shù)t

1

2

3

4

5

銷(xiāo)量百件

1

經(jīng)分析發(fā)現(xiàn),可用線(xiàn)性回歸模型擬合當(dāng)?shù)卦撋唐蜂N(xiāo)量千件與返還點(diǎn)數(shù)t之間的相關(guān)關(guān)系請(qǐng)用最小二乘法求y關(guān)于t的線(xiàn)性回歸方程,并預(yù)測(cè)若返回6個(gè)點(diǎn)時(shí)該商品每天銷(xiāo)量;

若節(jié)日期間營(yíng)銷(xiāo)部對(duì)商品進(jìn)行新一輪調(diào)整已知某地?cái)M購(gòu)買(mǎi)該商品的消費(fèi)群體十分龐大,經(jīng)營(yíng)銷(xiāo)調(diào)研機(jī)構(gòu)對(duì)其中的200名消費(fèi)者的返點(diǎn)數(shù)額的心理預(yù)期值進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:

返還點(diǎn)數(shù)預(yù)期值區(qū)間

百分比

頻數(shù)

20

60

60

30

20

10

求這200位擬購(gòu)買(mǎi)該商品的消費(fèi)者對(duì)返點(diǎn)點(diǎn)數(shù)的心理預(yù)期值X的樣本平均數(shù)及中位數(shù)的估計(jì)值同一區(qū)間的預(yù)期值可用該區(qū)間的中點(diǎn)值代替;估計(jì)值精確到

將對(duì)返點(diǎn)點(diǎn)數(shù)的心理預(yù)期值在的消費(fèi)者分別定義為“欲望緊縮型”消費(fèi)者和“欲望膨脹型”消費(fèi)者,現(xiàn)采用分層抽樣的方法從位于這兩個(gè)區(qū)間的30名消費(fèi)者中隨機(jī)抽取6名,再?gòu)倪@6人中隨機(jī)抽取3名進(jìn)行跟蹤調(diào)查,設(shè)抽出的3人中“欲望膨脹型”消費(fèi)者的人數(shù)為隨機(jī)變量X,求X的分布列及數(shù)學(xué)期望.

參考公式及數(shù)據(jù):,;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩焦點(diǎn)分別為,是橢圓在第一象限內(nèi)的一點(diǎn),并滿(mǎn)足,過(guò)作傾斜角互補(bǔ)的兩直線(xiàn)、分別交橢圓于兩點(diǎn).

1)求點(diǎn)坐標(biāo);

2)當(dāng)直線(xiàn)經(jīng)過(guò)點(diǎn)時(shí),求直線(xiàn)的方程;

3)求證直線(xiàn)的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)不等式組所表示的平面區(qū)域?yàn)?/span>,其面積為.①若,則的值唯一;②若,則的值有2個(gè);③若為三角形,則;④若為五邊形,則.以上命題中,真命題的個(gè)數(shù)是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案