【題目】定義:如果數(shù)列的任意連續(xù)三項均能構(gòu)成一個三角形的三邊長,則稱三角形數(shù)列,對于三角形數(shù)列,如果函數(shù)使得仍為一個三角形數(shù)列,則稱是數(shù)列保三角形函數(shù)

1)已知是首項為2,公差為1的等差數(shù)列,若是數(shù)列保三角形函數(shù),求k的取值范圍;

2)已知數(shù)列的首項為2010,是數(shù)列的前n項和,且滿足,證明三角形數(shù)列.

【答案】12)見解析

【解析】

1)由題得,解不等式即得解;

2)先求出,再證明.

1)顯然對任意正整數(shù)都成立,

是三角形數(shù)列.

因為,顯然有,

解得.因為,

所以當(dāng)時,是數(shù)列保三角形函數(shù)”.

2)由,

兩式相減得

所以,因為

所以,所以數(shù)列是等比數(shù)列.

所以

顯然,

因為

所以三角形數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)橢圓的左、右焦點分別為,點在橢圓上,的面積為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)圓心在軸上的圓與橢圓在軸的上方有兩個交點,且圓在這兩個交點處的兩條切線相互垂直并分別過不同的焦點,求圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓過定點A(4,0), 且在y軸上截得的弦MN的長為8.

(Ⅰ) 求動圓圓心的軌跡C的方程;

(Ⅱ) 已知點B(1,0), 設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點P, Q, x軸是的角平分線, 證明直線l過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于兩點.

)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年11月6日-11日,第十二屆中國國際航空航天博覽會在珠海舉行。在航展期間,從珠海市區(qū)開車前往航展地有甲、乙兩條路線可走,已知每輛車走路線甲堵車的概率為,走路線乙堵車的概率為p,若現(xiàn)在有A,B兩輛汽車走路線甲,有一輛汽車C走路線乙,且這三輛車是否堵車相互之間沒有影響。

(1)若這三輛汽車中恰有一輛汽車被堵的概率為,求p的值。

(2)在(1)的條件下,求這三輛汽車中被堵車輛的輛數(shù)X的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2008名學(xué)生參加大型公益活動若有兩名學(xué)生互相認(rèn)識,則將這兩名學(xué)生看作一個合作小組

(1)求合作小組數(shù)目的最小值使得無論學(xué)生認(rèn)識的情況如何,都存在三名學(xué)生他們兩兩都在一個合作小組;

(2)若合作小組數(shù)目為,證明存在四名學(xué)生、、,使得、、分別為一個合作小組.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cy2=2px過點P(1,1).過點(0, )作直線l與拋物線C交于不同的兩點M,N,過點Mx軸的垂線分別與直線OP,ON交于點A,B,其中O為原點.

(Ⅰ)求拋物線C的方程,并求其焦點坐標(biāo)和準(zhǔn)線方程;

(Ⅱ)求證:A為線段BM的中點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等比數(shù)列的公比為,前項和.

(1)求的取值范圍;

(2)設(shè),記的前項和為,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年9~12月某市郵政快遞業(yè)務(wù)量完成件數(shù)較2017年9~12月同比增長25%,該市2017年9~12月郵政快遞業(yè)務(wù)量柱形圖及2018年9~12月郵政快遞業(yè)務(wù)量結(jié)構(gòu)扇形圖如圖所示,根據(jù)統(tǒng)計圖,給出下列結(jié)論:

①2018年9~12月,該市郵政快遞業(yè)務(wù)量完成件數(shù)約1500萬件;

②2018年9~12月,該市郵政快遞同城業(yè)務(wù)量完成件數(shù)與2017年9~12月相比有所減少;

③2018年9~12月,該市郵政快遞國際及港澳臺業(yè)務(wù)量同比增長超過75%,其中正確結(jié)論的個數(shù)為( )

A. 3

B. 2

C. 1

D. 0

查看答案和解析>>

同步練習(xí)冊答案