【題目】2019625日,《固體廢物污染環(huán)境防治法(修訂草案)》初次提請(qǐng)全國(guó)人大常委會(huì)審議,草案對(duì)“生活垃圾污染環(huán)境的防治”進(jìn)行了專章規(guī)定.草案提出,國(guó)家推行生活垃圾分類制度.為了了解人民群眾對(duì)垃圾分類的認(rèn)識(shí),某市環(huán)保部門對(duì)該市市民進(jìn)行了一次垃圾分類網(wǎng)絡(luò)知識(shí)問(wèn)卷調(diào)查,每一位市民僅有一次參加機(jī)會(huì),通過(guò)隨機(jī)抽樣,得到參加問(wèn)卷調(diào)查的1000人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如表所示:

得分

頻數(shù)

25

150

200

250

225

100

50

1)由頻數(shù)分布表可以認(rèn)為,此次問(wèn)卷調(diào)查的得分服從正態(tài)分布近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表),請(qǐng)利用正態(tài)分布的知識(shí)求;

2)在(1)的條件下,市環(huán)保部門為此次參加問(wèn)卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:

①得分不低于 “的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi);

②每次獲贈(zèng)的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:

獲贈(zèng)的隨機(jī)話費(fèi)(單位:元)

20

40

概率

現(xiàn)市民小王要參加此次問(wèn)卷調(diào)查,記(單位:元)為該市民參加問(wèn)卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列及數(shù)學(xué)期望.

附:①;②若,則,,

【答案】12)分布列見(jiàn)解析,

【解析】

(1)先求出,再根據(jù)正態(tài)分布的知識(shí)求出即可;

(2)先求出的所有可能情況元,再求的的分布列及數(shù)學(xué)期望即可.

1)根據(jù)題中所給的統(tǒng)計(jì)表,結(jié)合題中所給的條件,可以求得

;

,

所以

2)根據(jù)題意可以得出所得話費(fèi)的可能值有20,40,60,80元,

20元的情況為低于平均值,概率

40元的情況有一次機(jī)會(huì)獲得40元,兩次機(jī)會(huì)獲得2個(gè)20元,概率,

60元的情況為兩次機(jī)會(huì),一次40元,一次20元,概率,

80元的情況為兩次機(jī)會(huì),都是40元,概率,

所以變量的分布列為:

20

40

60

80

所以其期望為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C),其中離心率,點(diǎn)為橢圓上的動(dòng)點(diǎn),為橢圓的左右焦點(diǎn),若面積的最大值為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)直線 交橢圓兩點(diǎn),點(diǎn)是橢圓的上頂點(diǎn),若,試問(wèn)直線是否經(jīng)過(guò)定點(diǎn),若經(jīng)過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo),否則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)x3(a>0a≠1)

(1)求函數(shù)f(x)的定義域;

(2)討論函數(shù)f(x)的奇偶性;

(3)a的取值范圍,使f(x)>0在定義域上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=lnxax+1aR).

1)求fx)的單調(diào)區(qū)間;

2)設(shè)gx)=lnx,若對(duì)任意的x1∈(0,+∞),存在x2∈(1,+∞),使得fx1)<gx2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,左、右焦點(diǎn)分別是,橢圓上短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為

(1)求橢圓的方程;

(2)過(guò)作垂直于軸的直線交橢圓兩點(diǎn)(點(diǎn)在第二象限),是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn),若,求證:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn)離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),為橢圓的左焦點(diǎn),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知公差不為零的等差數(shù)列中,,且,成等比數(shù)列,

1)求數(shù)列的通項(xiàng)公式;

2)數(shù)列滿足,數(shù)列的前n項(xiàng)和為,若不等式對(duì)一切恒成立,求的取值范圍.

3)設(shè)數(shù)列的前n項(xiàng)和為,求證:對(duì)任意正整數(shù)n,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由中央電視臺(tái)綜合頻道()和唯眾傳媒聯(lián)合制作的《開講啦》是中國(guó)首檔青年電視公開課.每期節(jié)目由一位知名人士講述自己的故事,分享他們對(duì)于生活和生命的感悟,給予中國(guó)青年現(xiàn)實(shí)的討論和心靈的滋養(yǎng),討論青年們的人生問(wèn)題,同時(shí)也在討論青春中國(guó)的社會(huì)問(wèn)題,受到青年觀眾的喜愛(ài),為了了解觀眾對(duì)節(jié)目的喜愛(ài)程度,電視臺(tái)隨機(jī)調(diào)查了、兩個(gè)地區(qū)的100名觀眾,得到如下的列聯(lián)表,已知在被調(diào)查的100名觀眾中隨機(jī)抽取1名,該觀眾是地區(qū)當(dāng)中“非常滿意”的觀眾的概率為0.35.

非常滿意

滿意

合計(jì)

30

15

合計(jì)

(1)現(xiàn)從100名觀眾中用分層抽樣的方法抽取20名進(jìn)行問(wèn)卷調(diào)查,則應(yīng)抽取“非常滿意”的地區(qū)的人數(shù)各是多少.

0.050

0.010

0.001

3.841

6.635

10.828

(2)完成上述表格,并根據(jù)表格判斷是否有的把握認(rèn)為觀眾的滿意程度與所在地區(qū)有關(guān)系.

(3)若以抽樣調(diào)查的頻率為概率,從地區(qū)隨機(jī)抽取3人,設(shè)抽到的觀眾“非常滿意”的人數(shù)為,求的分布列和期望.

附:參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,,的中點(diǎn).

(1)證明:平面;

(2)若點(diǎn)在棱上,且,求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案