、如圖,已知四棱錐
中,底面
是直角梯形,
,
,
,
,
平面
,
.
(1)求證:
平面
;
(2)求證:
平面
;
(3)若
M是PC的中點(diǎn),求三棱錐
M—ACD的體積.
(1)
(2)
(1)證明:
,且
平面
∴
平面
. 3分
(2)證明:在直角梯形
中,過
作
于點(diǎn)
,則四邊形
為矩形
∴
,又
,∴
,在Rt△
中,
,
∴
,
4分
∴
,則
,
∴
6分[
又
∴
7分
∴
平面
9分(3)∵
是
中點(diǎn),
∴
到面
的距離是
到面
距離的一半. 11分
. 14分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題12分)如圖,在直三棱柱(側(cè)棱與底面垂直的三棱柱)
中,
,
,
,
是
邊的中點(diǎn).
(Ⅰ)求證:
;
(Ⅱ)求證:
∥面
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)
如圖,在
中,
,
,
、
分別為
、
的中點(diǎn),
的延長線交
于
,F(xiàn)將
沿
折起,折成二面角
,連接
.
(I)求證
:平面
平面
;
(II)當(dāng)
時,求二面角
大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,直三棱柱
中,
AB=1,
,∠
ABC=60
.
(1)證明:
;
(2)求二面角
A—
—
B的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分13分)
各棱長均為2的斜三棱柱ABC—DEF中,已知BF⊥AE,
BF∩CE=O,AB=AE,連結(jié)AO。
(I)求證:AO⊥平面FEBC。
(II)求二面角B—A
C—E的大小。
(III)求三棱錐B—DEF的體積。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
.(本小題12 分)如圖,在四棱錐P-ABCD中,側(cè)面PAD是正三角形,且與底面ABCD垂直,底面ABCD為正方形,E、F分別為AB、PC的中點(diǎn).
①求證:EF⊥平面PCD;
②求平面PCB與平面PCD的夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分13分) 如圖5,已知直角梯形
所在的平面
垂直于平面
,
,
,
. (1)在直線
上是否存在一點(diǎn)
,使得
平面
?請證明你的結(jié)論;
(2)求平面
與平面
所成的銳二面角
的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
在四棱錐P—ABCD中,底面ABCD是一直角梯形,
,
與底面成30°角.
(1)若
為垂足,求證:
;
(2)求平面PAB與平面PCD所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題14分)
如圖4,正方體
中,點(diǎn)E在棱CD上。
(1)求證:
;
(2)若E是CD中點(diǎn),求
與平面
所成的角;
(3)設(shè)M在
上,且
,是否存在點(diǎn)E,使平面
⊥平面
,若存在,指出點(diǎn)E的位置,若不存在,請說明理由。
查看答案和解析>>