如圖,液體從一圓錐漏斗漏入一圓柱桶中,開始漏斗盛滿液體,經(jīng)過3分鐘漏完,若圓柱中液面上升速度是一常量, H是圓錐漏斗中液面下落的距離. 則H與下落時(shí)間t分鐘的函數(shù)關(guān)系表示的圖象可能是(    )
B

試題分析:利用特殊值法,圓柱液面上升速度是常量,表示圓錐漏斗中液體單位時(shí)間內(nèi)落下的體積相同,當(dāng)時(shí)間取1.5分鐘時(shí),液面下降高度與漏斗高度的比較.由于所給的圓錐形漏斗上口大于下口,當(dāng)時(shí)間取t時(shí),漏斗中液面下落的高度不會(huì)達(dá)到漏斗高度的,對(duì)比四個(gè)選項(xiàng)的圖象可得結(jié)果.故選B
點(diǎn)評(píng):本題考查函數(shù)圖象,還可以正面分析得出結(jié)論:圓柱液面上升速度是常量,則V(這里的V是漏斗中剩下液體的體積)與t成正比(一次項(xiàng)),根據(jù)圓錐體積公式V= ,可以得出H=at2+bt中,a為正數(shù),另外,t與r成反比,可以得出H=at^2+bt中,b為正數(shù).所以選擇第二個(gè)答案.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義在上的奇函數(shù),當(dāng)時(shí),,則關(guān)于的函數(shù)的所有零點(diǎn)之和為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題12分)已知).
(1)判斷函數(shù)的奇偶性,并證明;
(2)若,用單調(diào)性定義證明函數(shù)在區(qū)間上單調(diào)遞減;
(3)是否存在實(shí)數(shù),使得的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000043331482.png" style="vertical-align:middle;" />時(shí),值域?yàn)?br />,若存在,求出實(shí)數(shù)的取值范圍;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)在下列哪個(gè)區(qū)間內(nèi)有零點(diǎn)                        
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(理科題)(本小題12分)
某房產(chǎn)開發(fā)商投資81萬元建一座寫字樓,第一年裝修費(fèi)為1萬元,以后每年增加2萬元,把寫字樓出租,每年收入租金30萬元。
(1)若扣除投資和各種裝修費(fèi),則從第幾年開始獲取純利潤(rùn)?
(2)若干年后開發(fā)商為了投資其他項(xiàng)目,有兩種處理方案①年平均利潤(rùn)最大時(shí)以46萬元出售該樓;
②純利潤(rùn)總和最大時(shí),以10萬元出售樓,問選擇哪種方案盈利更多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某人從2008年起,每年1月1日到銀行新存入元(一年定期),若年利率為保持不變,且每年到期存款和利息自動(dòng)轉(zhuǎn)為新的一年定期,到2011年底將所有存款及利息全部取回,則可取回的錢數(shù)(元)為
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),若上的最大值為,求的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的零點(diǎn)為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)病人按規(guī)定的劑量服用某藥物,測(cè)得服藥后,每毫升血液中含藥量(毫克)與時(shí)間(小時(shí))滿足:前1小時(shí)內(nèi)成正比例遞增,1小時(shí)后按指數(shù)型函數(shù)為常數(shù))衰減.如圖是病人按規(guī)定的劑量服用該藥物后,每毫升血液中藥物含量隨時(shí)間變化的曲線.
(1)求函數(shù)的解析式;
(2)已知每毫升血液中含藥量不低于0.5毫克時(shí)有治療效果,低于0.5毫克時(shí)無治療效果.求病人一次服藥后的有效治療時(shí)間為多少小時(shí)?

查看答案和解析>>

同步練習(xí)冊(cè)答案