【題目】如圖,在平面直角坐標(biāo)系 中,已知圓 ,點(diǎn) ,點(diǎn) ,以B為圓心, 為半徑作圓,交圓C于點(diǎn)P,且 的平分線交線段CP于點(diǎn)Q.

(1)當(dāng)a變化時(shí),點(diǎn)Q始終在某圓錐曲線 上運(yùn)動(dòng),求曲線 的方程;
(2)已知直線l過點(diǎn)C,且與曲線 交于M,N兩點(diǎn),記 面積為 面積為 ,求 的取值范圍.

【答案】
(1)解:∵ ,
,∴ ,
,∴ ,
由橢圓的定義可知, Q點(diǎn)的軌跡是以C,A為焦點(diǎn), 2a=4的橢圓,
故點(diǎn)Q的軌跡方程為
(2)解:由題可知,設(shè)直線 ,不妨設(shè)
, ,
,
,∴ ,

,即 ,

.
【解析】(1)根據(jù)題目所給邊角關(guān)系,可得點(diǎn)Q距兩定點(diǎn)A,C的距離和為一定值,符合橢圓的定義,故可得點(diǎn)Q的軌跡方程。
(2)設(shè)出直線l的方程,聯(lián)立橢圓,利用韋達(dá)定理求出點(diǎn)的坐標(biāo)間的關(guān)系,求出其變化范圍,然后代入面積公式中,即可得到比值。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,分別為棱的中點(diǎn).已知,.

求證:(1)直線PA平面DEF;

(2)平面BDE⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C: ,點(diǎn) 在x軸的正半軸上,過點(diǎn)M的直線 與拋物線C相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).

(1)若 ,且直線 的斜率為1,求以AB為直徑的圓的方程;
(2)是否存在定點(diǎn)M,使得不論直線 繞點(diǎn)M如何轉(zhuǎn)動(dòng), 恒為定值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解關(guān)于的不等式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直三棱柱 中, 分別是 的中點(diǎn), ,則BM與AN所成角的余弦值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知圓 的圓心 ,半徑 .
(1)求圓 的極坐標(biāo)方程;
(2)若 ,直線 的參數(shù)方程為 為參數(shù)),直線 交圓 兩點(diǎn),求弦長(zhǎng) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下的資料:
該興趣小組確定的研究方案是:現(xiàn)從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選用的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
參考公式:


(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月的數(shù)據(jù),求出 關(guān)于 的線性回歸方程 ;
(3)若有線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否是理想?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在中,,點(diǎn)在直線上,若的面積為10,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)任意m[-1,1],函數(shù)f(x)x2(m4)x42m的值恒大于零,x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案