【題目】設(shè)是橢圓 的四個(gè)頂點(diǎn),菱形的面積與其內(nèi)切圓面積分別為 .橢圓的內(nèi)接的重心(三條中線的交點(diǎn))為坐標(biāo)原點(diǎn).

(1)求橢圓的方程;

(2) 的面積是否為定值?若是,求出該定值,若不是,請(qǐng)說明理由.

【答案】(1);(2

【解析】試題分析:

(I)由內(nèi)切圓面積得半徑,即為原點(diǎn)到直線PQ的距離,可得,又四邊形PQRS的面積為,從而可得,解得得橢圓方程;

(II)可先求特殊情形下的三角形面積,即斜率不存在時(shí),C為橢圓的左(右)頂點(diǎn),求得面積為;當(dāng)斜率存在時(shí),設(shè)方程為,代入橢圓方程,并設(shè),由韋達(dá)定理得,利用O是的重心,得表示出C點(diǎn)坐標(biāo),把C點(diǎn)坐標(biāo)代入橢圓方程求得的關(guān)系式為,由圓錐曲線中的弦長公式求得弦長,求出C點(diǎn)到直線AB的距離,從而得三角形ABC的面積,代入剛才的關(guān)系式可得,因此結(jié)論為存在.

試題解析:

(Ⅰ)∵菱形的面積與其內(nèi)切圓面積分別為,

,

聯(lián)立解得,

故所求橢圓的方程為.

(Ⅱ)當(dāng)直線斜率不存在時(shí),

的重心,∴為橢圓的左、右頂點(diǎn),不妨設(shè)

則直線的方程為,可得, 到直線的距離

當(dāng)直線的斜率存在時(shí),設(shè)直線方程為: ,

聯(lián)立,得,

,

的重心,∴

點(diǎn)在橢圓上,故有

化簡得

又點(diǎn)到直線的距離是原點(diǎn)到距離的3倍得到).

綜上可得, 的面積為定值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在區(qū)間上無零點(diǎn),求實(shí)數(shù)的最小值;

(2)若對(duì)任意給定的,在上方程總存在不等的實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙兩種棉花中各抽測了25根棉花的纖維長度(單位: ) 組成一個(gè)樣本,且將纖維長度超過315的棉花定為一級(jí)棉花.設(shè)計(jì)了如下莖葉圖:

(1)根據(jù)以上莖葉圖,對(duì)甲、乙兩種棉花的纖維長度作比較,寫出兩個(gè)統(tǒng)計(jì)結(jié)論(不必計(jì)算);

(2)從樣本中隨機(jī)抽取甲、乙兩種棉花各2根,求其中恰有3根一級(jí)棉花的概率;

(3)用樣本估計(jì)總體,將樣本頻率視為概率,現(xiàn)從甲、乙兩種棉花中各隨機(jī)抽取1根,求其中一級(jí)棉花根數(shù)X的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,.

(1)若對(duì)任意的實(shí)數(shù),恒有,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),求證:方程恒有兩解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)對(duì)任意x,yR,總有f(x)f(y)f(xy),且當(dāng)x>0時(shí),f(x)<0f(1)=-.

(1)求證:f(x)R上的單調(diào)減函數(shù).

(2)f(x)[3,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校社團(tuán)活動(dòng)開展有聲有色,極大地推動(dòng)了學(xué)生的全面發(fā)展,深受學(xué)生歡迎,每屆高一新生都踴躍報(bào)名加入.現(xiàn)已知高一某班有6名男同學(xué)和4名女同學(xué)參加心理社,在這10名同學(xué)中,4名同學(xué)初中畢業(yè)于同一所學(xué)校,其余6名同學(xué)初中畢業(yè)于其他6所不同的學(xué)校.現(xiàn)從這10名同學(xué)中隨機(jī)選取4名同學(xué)代表社團(tuán)參加校際交流(每名同學(xué)被選到的可能性相同).

(Ⅰ)求選出的4名同學(xué)初中畢業(yè)于不同學(xué)校的概率;

(Ⅱ)設(shè)為選出的4名同學(xué)中女同學(xué)的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一輛汽車從市出發(fā)沿海岸一條筆直公路以每小時(shí)的速度向東均速行駛,汽車開動(dòng)時(shí),在市南偏東方向距且與海岸距離為的海上處有一快艇與汽車同時(shí)出發(fā),要把一份稿件交給這汽車的司機(jī).

1)快艇至少以多大的速度行駛才能把稿件送到司機(jī)手中?

2)在(1)的條件下,求快艇以最小速度行駛時(shí)的行駛方向與所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】扎花燈是中國一門傳統(tǒng)手藝,逢年過節(jié)時(shí)常常在大街小巷看到各式各樣的美麗花燈,F(xiàn)有一個(gè)花燈,它外圍輪廓是由兩個(gè)形狀完全相同的拋物線繞著它們自身的對(duì)稱軸旋轉(zhuǎn)而來(如圖),花燈的下頂點(diǎn)為,上頂點(diǎn)為米,在它的內(nèi)部放有一個(gè)半徑為米的球形燈泡,球心在軸,米。若球形燈泡的球心到四周輪廓上的點(diǎn)的最近距離是在下頂點(diǎn)處取到。建立適當(dāng)?shù)淖鴺?biāo)系可得拋物線方程為,則實(shí)數(shù)的取值范圍是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(a∈R),若函數(shù)恰有5個(gè)不同的零點(diǎn),則的取值范圍是( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案