設(shè)y=f(x)是偶函數(shù),對(duì)于任意正數(shù)x都有f(x+2)=-2f(2-x),已知f(-1)=4,則f(-3)等于( )
A.2
B.-2
C.8
D.-8
【答案】分析:根據(jù)對(duì)任意的正數(shù)x都有f(2+x)=-2f(2-x),令x=1得,求出f(3)的值,然后根據(jù)偶函數(shù)可求出f(-3)的值即可.
解答:解:∵對(duì)任意的正數(shù)x都有f(2+x)=-2f(2-x),
∴令x=1得,f(3)=-2f(1)=-8
而f(x)為偶函數(shù)
∴f(-3)=f(3)=-8
故選D.
點(diǎn)評(píng):本題主要考查了函數(shù)的周期性,以及函數(shù)的奇偶性和賦值法的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)y=f(x)是偶函數(shù),對(duì)于任意正數(shù)x都有f(x+2)=-2f(2-x),已知f(-1)=4,則f(-3)等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)y=f(x)是偶函數(shù),且x≥0時(shí),f(x)=x(x-2),求
(1)x<0時(shí),f(x)的解析式;
(2)畫出f(x)的圖象,并由圖直接寫出它的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•寶山區(qū)二模)已知Sn是各項(xiàng)均為正數(shù)的遞減等比數(shù)列{an}的前n項(xiàng)之和,且a2=
1
2
,S3=
7
4

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)y=f(x)是偶函數(shù),當(dāng)x≤0時(shí),f(x)=log2(x+1),求f(x)的定義域D及其解析式;
(3)對(duì)于任意正整數(shù)n及(2)中的f(x),若不等式f(x)+Sn<0恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•寶山區(qū)二模)已知Sn是各項(xiàng)均為正數(shù)的遞減等比數(shù)列{an}的前n項(xiàng)之和,且a2=
1
2
,S3=
7
4

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)y=f(x)是偶函數(shù),當(dāng)x≤0時(shí),f(x)=log2(x+1),求f(x)的定義域D及其解析式;
(3)對(duì)任意正整數(shù)n和(2)中的f(x),若不等式f(x)+an<0恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年北京市順義一中高一(上)10月月考數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)y=f(x)是偶函數(shù),且x≥0時(shí),f(x)=x(x-2),求
(1)x<0時(shí),f(x)的解析式;
(2)畫出f(x)的圖象,并由圖直接寫出它的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案