若將邊長(zhǎng)為的正方形繞其一條邊所在直線旋轉(zhuǎn)一周,則所形成圓柱的體積等于         .

試題分析:要求圓柱的體積,就要確定圓柱的底面半徑和高,本題中圓柱的底面半徑和高都是1,故體積為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在四棱錐中,底面為矩形,平面,點(diǎn)在線段上,平面

(1)證明:平面.;
(2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

()如圖,四棱錐中,平面,底面是平行四邊形,,的中點(diǎn)

(Ⅰ)求證:
(Ⅱ)試在線段上確定一點(diǎn),使,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在底面是正方形的四棱錐中,,于點(diǎn),中點(diǎn),上一動(dòng)點(diǎn).

(1)求證:;
(1)確定點(diǎn)在線段上的位置,使//平面,并說明理由.
(3)如果PA=AB=2,求三棱錐B-CDF的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱柱中,側(cè)棱底面,的中點(diǎn),.

(Ⅰ)求證://平面;
(Ⅱ)設(shè),求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱柱ABC-A1B1C1中,A1B⊥平面ABC,AB⊥AC.

(1)求證:AC⊥BB1
(2)若P是棱B1C1的中點(diǎn),求平面PAB將三棱柱分成的兩部分體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知四面體的四個(gè)頂點(diǎn)都在球的球面上,若平面,,且,,則球的表面積為(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知D、E是邊長(zhǎng)為3的正三角形的BC邊上的兩點(diǎn),且,現(xiàn)將、分別繞AD和AE折起,使AB和AC重合(其中B、C重合).則三棱錐的內(nèi)切球的表面積是(  )
A.        B.          C.         D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

圓柱形容器內(nèi)盛有高度為的水,若放入三個(gè)相同的球(球的半徑與圓柱的底面半徑相同)后,水恰好淹沒最上面的球(如右圖所示),則球的半徑是(    )
A.2B.3
C.4D.

查看答案和解析>>

同步練習(xí)冊(cè)答案