11.一個長方體被一個平面截去一部分后所剩幾何體的三視圖如圖所示 (單位:cm),則該幾何體的體積為( 。
A.120 cm3B.80 cm3C.100 cm3D.60 cm3

分析 由題意,幾何體是長寬高分別是5,4,6cm的長方體剪去一個角,畫出圖形,明確對應(yīng)數(shù)據(jù),計算體積即可.

解答 解:由題意,幾何體是長寬高分別是5,4,6cm的長方體剪去一個角,如圖:所以幾何體的體積為5×4×6$-\frac{1}{3}×\frac{1}{2}×5×4×6$=100cm3
故選C.

點評 本題考查了由幾何體的三視圖求對應(yīng)幾何體的體積;正確還原幾何體是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知頂點在原點O,準(zhǔn)線方程是y=-1的拋物線與過點M(0,1)的直線l交于A,B兩點,若直線OA和直線OB的斜率之和為1,
(1)求出拋物線的標(biāo)準(zhǔn)方程;
(2)求直線l的方程;
(3)求直線l與拋物線相交所得的弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=$\frac{1}{x}$+2x在x=1處切線的傾斜角是$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若函數(shù)f(x)=logax(a>0,a≠1)在$[\frac{1}{2},16]$上的最大值為4,最小值為m,且函數(shù)$g(x)=(2+m)\sqrt{x}$ 在(0,+∞)上是增函數(shù),則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知正四棱錐P-ABCD的各頂點在同一個球O的球面上,且該棱錐的體積為$\frac{{3\sqrt{2}}}{2}$,底面邊長為$\sqrt{3}$,則球O的表面積為8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系取相同的單位長度.已知曲線C:ρ=2cosθ,過點P(-1,0)的直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1-\frac{{2\sqrt{2}}}{3}t\\ y=\frac{1}{3}t\end{array}\right.$(t為參數(shù)),且直線l與曲線C分別交于點A,B
(1)求|AB|;
(2)若點Q是曲線C上任意一點,R是線段PQ的中點,過點R作x軸的垂線段RH,H為垂足,點G在射線HR上,且滿足|HG|=3|HR|,求點G的軌跡C′的參數(shù)方程并說明它表示什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=sin2x+cos2x的圖象向左平移$φ(0<φ<\frac{π}{2})$個單位后,得到的函數(shù)g(x)為偶函數(shù),則(  )
A.g(x)的圖象關(guān)于直線$x=\frac{π}{2}$對稱B.g(x)的圖象關(guān)于點(π,0)對稱
C.g(x)在$[0,\frac{π}{2}]$上遞增D.g(x)在[0,π]上遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.?dāng)?shù)列{an}中,已知a1=5,a2=19,a3=41,當(dāng)n≥3時,3(an-an-1)=an+1-an-2,則a10=419.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知${({\sqrt{x}-\frac{1}{{2\root{4}{x}}}})^n}$的展開式中的二項式系數(shù)之和為256.
(Ⅰ)證明:展開式中沒有常數(shù)項;
(Ⅱ)求展開式中所有有理項.

查看答案和解析>>

同步練習(xí)冊答案