若函數(shù)
恰有三個單調(diào)區(qū)間,則實數(shù)
的取值范圍為 ( )
試題分析:由題意知,f′(x)=3ax2+6x-1,
∵f(x)恰有三個單調(diào)區(qū)間,
∴f′(x)=3ax2+6x-1=0有兩個不同的實數(shù)根,
∴△=36-4×3a×(-1)>0,且a≠0,即a>-3且a≠0,即(-3,0)∪(0,+∞),故選C.
點評:簡單題,關鍵是認識到f′(x)=3ax2+6x-1=0有兩個不同的實數(shù)根。易錯點是忽視對二次項系數(shù)的討論。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
設函數(shù)
.
(1)若
,
對一切
恒成立,求
的最大值;
(2)設
,且
、
是曲線
上任意兩點,若對任意
,直線
的斜率恒大于常數(shù)
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若函數(shù)
在區(qū)間
上是單調(diào)遞減函數(shù),則實數(shù)
的取值范圍是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
,
都是定義在R上的函數(shù),
,
,
,且
,
,在有窮數(shù)列
中,任意取正整數(shù)
,則前
項和大于
的概率是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
函數(shù)
的圖象大致為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若函數(shù)
在R 上可導,且滿足
,則( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知函數(shù)
處有極大值,則常數(shù)c=
;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
.
(1)求函數(shù)
的單調(diào)遞減區(qū)間;
(2)若
,證明:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
由直線
,及曲線
所圍圖形的面積為( )
查看答案和解析>>