【題目】由A,B,C,…等7人擔(dān)任班級(jí)的7個(gè)班委.
(1)若正、副班長(zhǎng)兩職只能由A,B,C這三人中選兩人擔(dān)任,則有多少種分工方案?
(2)若正、副班長(zhǎng)兩職至少要選A,B,C這三人中的1人擔(dān)任,有多少種分工方案?
【答案】(1);(2)
【解析】
(1)先安排正、副班長(zhǎng),再安排其他職務(wù)的班委,用分步乘法計(jì)數(shù)原理計(jì)算即可;(2)先對(duì)7個(gè)人擔(dān)任班級(jí)的7個(gè)班委進(jìn)行全排列,然后去掉A,B,C這三人中沒有人擔(dān)任正、副班長(zhǎng)的情況,即可得到答案。
(1)先安排正、副班長(zhǎng)有種方法,再安排其余職務(wù)有種方法,依分步乘法計(jì)數(shù)原理,共有=720種分工方案.
(2)7人的任意分工方案有種,A,B,C三人中無一人任正、副班長(zhǎng)的分工方案有種,因此A,B,C三人中至少有1人任正、副班長(zhǎng)的方案有=3600種.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家商場(chǎng)對(duì)同一種商品開展促銷活動(dòng),對(duì)購買該商品的顧客兩家商場(chǎng)的獎(jiǎng)勵(lì)方案如下:
甲商場(chǎng):顧客轉(zhuǎn)動(dòng)如圖所示的圓盤,當(dāng)指針指向陰影部分(圖中兩個(gè)陰影部分均為扇形,且每個(gè)扇形的圓心角均為,邊界忽略不計(jì))即為中獎(jiǎng).
乙商場(chǎng):從裝有2個(gè)白球、2個(gè)藍(lán)球和2個(gè)紅球(這些球除顏色外完全相同)的盒子中一次性摸出2球,若摸到的是2個(gè)相同顏色的球,則為中獎(jiǎng).
試問:購買該商品的顧客在哪家商場(chǎng)中獎(jiǎng)的可能性大?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中,,,是實(shí)數(shù)常數(shù),).
(1)若,函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱,求,的值;
(2)若函數(shù)滿足條件(1),且對(duì)任意,總有,求的取值范圍;
(3)若,函數(shù)是奇函數(shù),,,且對(duì)任意時(shí),不等式恒成立,求負(fù)實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】無窮數(shù)列、、滿足:,,,,記(表示3個(gè)實(shí)數(shù)、、中的最大數(shù)).
(1)若,,,求數(shù)列的前項(xiàng)和;
(2)若,,,當(dāng)時(shí),求滿足條件的的取值范圍;
(3)證明:對(duì)于任意正整數(shù)、、,必存在正整數(shù),使得,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,,,分別為的中點(diǎn).
(Ⅰ)證明:平面平面;
(Ⅱ)若,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左右焦點(diǎn)為,,是橢圓上半部分的動(dòng)點(diǎn),連接和長(zhǎng)軸的左右兩個(gè)端點(diǎn)所得兩直線交正半軸于,兩點(diǎn)(點(diǎn)在的上方或重合).
(1)當(dāng)面積最大時(shí),求橢圓的方程;
(2)當(dāng)時(shí),若是線段的中點(diǎn),求直線的方程;
(3)當(dāng)時(shí),在軸上是否存在點(diǎn)使得為定值,若存在,求點(diǎn)的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地建一座橋,兩端的橋墩已建好,這兩墩相距m米,余下工程只需建兩端橋墩之間的橋面和橋墩.經(jīng)測(cè)算,一個(gè)橋墩的工程費(fèi)用為256萬元;距離為x米的相鄰兩墩之間的橋面工程費(fèi)用為(2+)x萬元.假設(shè)橋墩等距離分布,所有橋墩都視為點(diǎn),且不考慮其他因素,記余下工程的費(fèi)用為y萬元.
(1)試寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)m=640米時(shí),需新建多少個(gè)橋墩才能使y最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直角梯形的下底與等腰直角三角形的斜邊重合,且(如圖(1)所示),將此圖形沿折疊成直二面角,連接,,得到四棱錐(如圖(2)所示).
(1)線段上是否存在點(diǎn),使平面?若存在,求出;若不存在,說明理由;
(2)在(1)的條件下,求平面與平面的夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市環(huán)保部門對(duì)市中心每天的環(huán)境污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合污染指數(shù)與時(shí)刻(時(shí))的關(guān)系為,,其中是與氣象有關(guān)的參數(shù),且.若用每天的最大值為當(dāng)天的綜合污染指數(shù),并記作.
(1)令,,求的取值范圍;
(2)求的表達(dá)式,并規(guī)定當(dāng)時(shí)為綜合污染指數(shù)不超標(biāo),求當(dāng)在什么范圍內(nèi)時(shí),該市市中心的綜合污染指數(shù)不超標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com