【題目】給定下列四個(gè)命題,其中真命題是( )
A.垂直于同一直線的兩條直線相互平行
B.若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行
C.垂直于同一平面的兩個(gè)平面相互平行
D.若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直
【答案】D
【解析】
根據(jù)空間中直線與直線、平面與平面,直線與平面的位置關(guān)系,結(jié)合判定定理和性質(zhì)定理,對選項(xiàng)進(jìn)行逐一分析即可判斷.
正方體同一頂點(diǎn)的三條棱兩兩垂直,則垂直于同一直線的兩條直線不一定平行,故A錯(cuò)誤;
若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,
兩直線可以相交,也可以成為異面直線,故B錯(cuò)誤;
正方體的前面和側(cè)面都垂直于底面,這兩個(gè)平面不平行,C錯(cuò)誤
對:利用反證法簡單證明如下:
若兩個(gè)平面垂直,假設(shè)一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面垂直.
因?yàn)?/span>,且平面的交線,
故可得,
這與題設(shè)與不垂直相互矛盾,故假設(shè)不成立,原命題成立.
即選項(xiàng)正確.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016高考新課標(biāo)II,理15)有三張卡片,分別寫有1和2,1和3,2和3.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:“我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:“我與丙的卡片上相同的數(shù)字不是1”,丙說:“我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓與軸相切于點(diǎn),與軸正半軸交于兩點(diǎn),(在的上方),且.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)作任一條直線與圓:相交于,兩點(diǎn).
①求證:為定值,并求出這個(gè)定值;
②求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知點(diǎn)A,B的坐標(biāo)分別為(3,0),(-3,0),直線AP,BP相交于點(diǎn)P,且它們的斜率之積是-2,求動(dòng)點(diǎn)P的軌跡方程.
(2)設(shè)P(x,y),直線l1:x+y=0,l2:x-y=0.若點(diǎn)P到l1的距離與點(diǎn)P到l2的距離之積為2,求動(dòng)點(diǎn)P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的直角坐標(biāo)方程為.以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求圓的極坐標(biāo)方程和直線的直角坐標(biāo)方程;
(2)在圓上找一點(diǎn),使它到直線的距離最小,并求點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓錐PO中,AB是圓O的直徑,且AB=4,C是底面圓O上一點(diǎn),且AC=2,點(diǎn)D為半徑OB的中點(diǎn),連接PD.
(1)求證:PC在平面APB內(nèi)的射影是PD;
(2)若PA=4,求底面圓心O到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為(θ為參數(shù)),直線l經(jīng)過點(diǎn)P(1,2),傾斜角α= .
(1)寫出圓C的普通方程和直線l的參數(shù)方程;
(2)設(shè)直線l與圓C相交于A,B兩點(diǎn),求|PA|·|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時(shí),證明: ;
(2)當(dāng)時(shí),函數(shù)單調(diào)遞增,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com