【題目】經(jīng)過中央電視臺《魅力中國城》欄目的三輪角逐,黔東南州以三輪競演總分排名第一名問鼎“最具人氣魅力城市”.如圖統(tǒng)計(jì)了黔東南州從2010年到2017年的旅游總?cè)藬?shù)(萬人次)的變化情況,從一個側(cè)面展示了大美黔東南的魅力所在.根據(jù)這個圖表,在下列給出的黔東南州從2010年到2017年的旅游總?cè)藬?shù)的四個判斷中,錯誤的是( )

A. 旅游總?cè)藬?shù)逐年增加

B. 2017年旅游總?cè)藬?shù)超過2015、2016兩年的旅游總?cè)藬?shù)的和

C. 年份數(shù)與旅游總?cè)藬?shù)成正相關(guān)

D. 從2014年起旅游總?cè)藬?shù)增長加快

【答案】B

【解析】從圖表中看出,旅游的總?cè)藬?shù)逐年增加時(shí)正確的;年份數(shù)與旅游總?cè)藬?shù)成正相關(guān),是正確的;從2014年起旅游總?cè)藬?shù)增長加快是正確的;其中選項(xiàng)明顯錯誤,故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S4=40,Sn=210,Sn-4=130,則n=(  )

A.12 B.14 C.16 D.18

【答案】B

【解析】Sn-Sn-4=an+an-1+an-2+an-3=80,S4=a1+a2+a3+a4=40,所以4(a1+an)=120,a1+an=30,由Sn=210,得n=14.

型】單選題
結(jié)束】
9

【題目】等比數(shù)列{an}是遞減數(shù)列,前n項(xiàng)的積為Tn,若T13=4T9,則a8a15=(  )

A. 2 B. ±2 C. 4 D. ±4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn+2=2an(n∈N*).
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2an , 數(shù)列{}的前n項(xiàng)和為Tn , 證明:Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高三年級800名學(xué)生在一次百米測試中,成績?nèi)吭?2秒到17秒之間,抽取其中50個樣本,將測試結(jié)果按如下方式分成五組:第一組[12,13),第二組[13,14),…,第五組[16,17],如圖是根據(jù)上述分組得到的頻率分布直方圖.
(1)若成績小于13秒被認(rèn)為優(yōu)秀,求該樣本在這次百米測試中成績優(yōu)秀的人數(shù);
(2)請估計(jì)本年級800名學(xué)生中,成績屬于第三組的人數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中, , 是平行四邊形, , ,點(diǎn)為棱的中點(diǎn),點(diǎn)在棱上,且,平面交于點(diǎn),則異面直線所成角的正切值為__________

【答案】

【解析】

延長的延長線與點(diǎn)Q,連接QEPA于點(diǎn)K,設(shè)QA=x,

,得,則,所以.

的中點(diǎn)為M,連接EM,則,

所以,則,所以AK=.

AD//BC,得異面直線所成角即為,

則異面直線所成角的正切值為.

型】填空
結(jié)束】
17

【題目】在極坐標(biāo)系中,極點(diǎn)為,已知曲線 與曲線 交于不同的兩點(diǎn),

(1)求的值;

(2)求過點(diǎn)且與直線平行的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)已知過原點(diǎn)的動直線與圓 相交于不同的兩點(diǎn)

1)求圓的圓心坐標(biāo);

2)求線段的中點(diǎn)的軌跡的方程;

3)是否存在實(shí)數(shù),使得直線 與曲線只有一個交點(diǎn)?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .若gx)存在2個零點(diǎn),則a的取值范圍是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知值域?yàn)閇﹣1,+∞)的二次函數(shù)滿足f(﹣1+x)=f(﹣1﹣x),且方程f(x)=0的兩個實(shí)根x1 , x2滿足|x1﹣x2|=2.
(1)求f(x)的表達(dá)式;
(2)函數(shù)g(x)=f(x)﹣kx在區(qū)間[﹣1,2]內(nèi)的最大值為f(2),最小值為f(﹣1),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等腰梯形ABCD中,E、F分別是CD、AB的中點(diǎn),CD=2,AB=4,AD=BC=.沿EF將梯形AFED折起,使得∠AFB=60°,如圖.

(1)若G為FB的中點(diǎn),求證:AG⊥平面BCEF;

(2)求二面角C-AB-F的正切值.

查看答案和解析>>

同步練習(xí)冊答案