【題目】已知函數(shù),.

(1)a≥2時(shí),F(x)=f(x)-g(x)的單調(diào)區(qū)間;

(2)設(shè)h(x)=f(x)+g(x),h(x)有兩個(gè)極值點(diǎn)為,其中,的最小值.

【答案】1)詳見(jiàn)解析;(2.

【解析】

試題本題主要考查函數(shù)的單調(diào)性、函數(shù)的最值、導(dǎo)數(shù)等基礎(chǔ)知識(shí),意在考查考生的運(yùn)算求解能力、推理論證能能力以及分類(lèi)討論思想和等價(jià)轉(zhuǎn)化思想的應(yīng)用.第一問(wèn),先確定的解析式,求出函數(shù)的定義域,對(duì)求導(dǎo),此題需討論的判別式,來(lái)決定是否有根,利用求函數(shù)的增區(qū)間,求函數(shù)的減區(qū)間;第二問(wèn),先確定解析式,確定函數(shù)的定義域,先對(duì)函數(shù)求導(dǎo),求出的兩根,即,而利用韋達(dá)定理,得到,,即得到,代入到中,要求,則構(gòu)造函數(shù),求出的最小值即可,對(duì)求導(dǎo),判斷函數(shù)的單調(diào)性,求出函數(shù)的最小值即為所求.

試題解析:(1)由題意,其定義域?yàn)?/span>,則2

對(duì)于,有.

當(dāng)時(shí),,的單調(diào)增區(qū)間為

當(dāng)時(shí),的兩根為,

的單調(diào)增區(qū)間為,

的單調(diào)減區(qū)間為.

綜上:當(dāng)時(shí),的單調(diào)增區(qū)間為;

當(dāng)時(shí),的單調(diào)增區(qū)間為

的單調(diào)減區(qū)間為. 6

2)對(duì),其定義域?yàn)?/span>.

求導(dǎo)得,,

由題兩根分別為,,則有, 8

,從而有

, 10

.

當(dāng)時(shí),,上單調(diào)遞減,

,

. 12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為;直線(xiàn)的參數(shù)方程為為參數(shù)),直線(xiàn)與曲線(xiàn)分別交于,兩點(diǎn).

(1)寫(xiě)出曲線(xiàn)的直角坐標(biāo)方程和直線(xiàn)的普通方程;

(2)若點(diǎn)的極坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex(x﹣a)2+4.

(1)若f(x)在(﹣∞,+∞)上單調(diào)遞增,求a的取值范圍;

(2)若x≥0,不等式f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為,過(guò)點(diǎn)的直線(xiàn)l的參數(shù)方程為t為參數(shù)),lC交于A,B兩點(diǎn).

1)求C的直角坐標(biāo)方程和l的普通方程;

2)若,成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓)的離心率為,且橢圓的一個(gè)焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合.過(guò)點(diǎn)的直線(xiàn)交橢圓,兩點(diǎn),為坐標(biāo)原點(diǎn).

1)若直線(xiàn)過(guò)橢圓的上頂點(diǎn),求的面積;

2)若,分別為橢圓的左、右頂點(diǎn),直線(xiàn),的斜率分別為,,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“不忘初心、牢記使命”主題教育活動(dòng)正在全國(guó)開(kāi)展,某區(qū)政府為統(tǒng)計(jì)全區(qū)黨員干部一周參與主題教育活動(dòng)的時(shí)間,從全區(qū)的黨員干部中隨機(jī)抽取n名,獲得了他們一周參加主題教育活動(dòng)的時(shí)間(單位:時(shí))的頻率分布直方圖,如圖所示,已知參加主題教育活動(dòng)的時(shí)間在內(nèi)的人數(shù)為92.

1)估計(jì)這些黨員干部一周參與主題教育活動(dòng)的時(shí)間的平均值;

2)用頻率估計(jì)概率,如果計(jì)劃對(duì)全區(qū)一周參與主題教育活動(dòng)的時(shí)間在內(nèi)的黨員干部給予獎(jiǎng)勵(lì),且參與時(shí)間在,內(nèi)的分別獲二等獎(jiǎng)和一等獎(jiǎng),通過(guò)分層抽樣方法從這些獲獎(jiǎng)人中隨機(jī)抽取5人,再?gòu)倪@5人中任意選取3人,求3人均獲二等獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù))的圖象在處的切線(xiàn)為為自然對(duì)數(shù)的底數(shù))

(1)求的值;

(2)若,且對(duì)任意恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由于受到網(wǎng)絡(luò)電商的沖擊,某品牌的洗衣機(jī)在線(xiàn)下的銷(xiāo)售受到影響,承受了一定的經(jīng)濟(jì)損失,現(xiàn)將地區(qū)200家實(shí)體店該品牌洗衣機(jī)的月經(jīng)濟(jì)損失統(tǒng)計(jì)如圖所示.

1)求的值;

2)求地區(qū)200家實(shí)體店該品牌洗衣機(jī)的月經(jīng)濟(jì)損失的眾數(shù)以及中位數(shù);

3)不經(jīng)過(guò)計(jì)算,直接給出地區(qū)200家實(shí)體店經(jīng)濟(jì)損失的平均數(shù)6000的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了鼓勵(lì)市民節(jié)約用電,實(shí)行“階梯式”電價(jià),將該市每戶(hù)居民的月用電量劃分為三檔,月用電量不超過(guò)200度的部分按元/度收費(fèi),超過(guò)200度但不超過(guò)400度的部分按元/度收費(fèi),超過(guò)400度的部分按1.0元/度收費(fèi).

(Ⅰ)求某戶(hù)居民用電費(fèi)用(單位:元)關(guān)于月用電量(單位:度)的函數(shù)解析式;

(Ⅱ)為了了解居民的用電情況,通過(guò)抽樣,獲得了今年1月份100戶(hù)居民每戶(hù)的用電量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖,若這100戶(hù)居民中,今年1月份用電費(fèi)用不超過(guò)260元的占,求, 的值;

(Ⅲ)在滿(mǎn)足(Ⅱ)的條件下,若以這100戶(hù)居民用電量的頻率代替該月全市居民用戶(hù)用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)代替,記為該居民用戶(hù)1月份的用電費(fèi)用,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案