【題目】已知等比數(shù)列{an}的各項均為正數(shù),且a2=6,a3+a4=72.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=an﹣n(n∈N*),求數(shù)列{bn}的前n項和

【答案】
(1)解:設(shè)等比數(shù)列{an}的公比為q,

∵a2=6,a3+a4=72,

∴6q+6q2=72,

即q2+q﹣12=0,

解得q=3或q=﹣4,

∵an>0,∴q>0,

∴q=3,a1= =2,

∴an=a1qn1=2×3n1(n∈N*);


(2)∵bn=2×3n1﹣n,

∴Sn=2(1+32+33+…+3n1﹣(1+2+3+…+n)=2× =3n﹣1﹣


【解析】1、由等比數(shù)列的通項公式可求得q=3或q=﹣4,根據(jù)題意可得∴an=a1qn1=2×3n1(n∈N*);
2、根據(jù)已知的通項公式整理可得Sn=一個等比數(shù)列求和公式+一個等差數(shù)列求和公式。,化簡整理可得。
【考點精析】本題主要考查了等比數(shù)列的通項公式(及其變式)和數(shù)列的前n項和的相關(guān)知識點,需要掌握通項公式:;數(shù)列{an}的前n項和sn與通項an的關(guān)系才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:在數(shù)列 中,若 為常數(shù))則稱 為“等方差數(shù)列”,下列是對“等方差數(shù)列”的有關(guān)判斷( )
①若 是“等方差數(shù)列”,在數(shù)列 是等差數(shù)列;
是“等方差數(shù)列”;
③若 是“等方差數(shù)列”,則數(shù)列 為常)也是“等方差數(shù)列”;
④若 既是“等方差數(shù)列”又是等差數(shù)列,則該數(shù)列是常數(shù)數(shù)列.
其中正確命題的個數(shù)為( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a1 , a2 , …,an是1,2,…,n的一個排列,求證: ·

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 m>1 且關(guān)于 x 的不等式 的解集為 [0,4] .
①求 m 的值;
②若 a , b 均為正實數(shù),且滿足 a+b=m ,求 a2+b2 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】①用反證法證明:在一個三角形中,至少有一個內(nèi)角大于或等于60°;
②已知 ,試用分析法證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: + =1(a>b>0)的右焦點為F,短軸的一個端點為M,直線l:3x﹣4y=0交橢圓E于A,B兩點,若|AF|+|BF|=4,點M到直線l的距離不小于 ,則橢圓E的離心率的取值范圍是( )
A.(0, ]
B.(0, ]
C.[ ,1)
D.[ ,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>2,求證:loga(a-1)<log(a1)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱A1B1C1﹣ABC中,AB=AC=AA1 ,點D是BC的中點.
(I)求證:AD⊥平面BCC1B1;
(II)求證:A1B∥平面ADC1
(III)求二面角A﹣A1B﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是等差數(shù)列,其中a10=30,a20=50.
(1)求數(shù)列{an}的通項公式;
(2)若bn=an﹣20,求數(shù)列{bn}的前n項和Tn的最小值.

查看答案和解析>>

同步練習(xí)冊答案