13.已知集合M={x|x-2>0,x∈R},N={y|y=$\sqrt{{x}^{2}+1}$,x∈R},則M∩N=( 。
A.{x|x≥1}B.{x|1≤x<2}C.{x|x>2}D.{x|x>2或x<0}

分析 先分別求出集合M和集合N,然后再求出集合M∩N.

解答 解:集合M={x|x-2>0,x∈R}=(2,+∞),N={y|y=$\sqrt{{x}^{2}+1}$,x∈R}=[1,+∞),
則M∩N=(2,+∞),
故選:C

點(diǎn)評(píng) 本題考查集合的性質(zhì)和運(yùn)算,解題時(shí)要根據(jù)實(shí)際情況,注意公式的靈活運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)$f(x)=\frac{1}{{\sqrt{ln(5-2x)}}}+\sqrt{{e^x}-1}$的定義域?yàn)椋ā 。?table class="qanwser">A.[0,+∞)B.(-∞,2]C.[0,2]D.[0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x+1)為偶函數(shù),則函數(shù)y=f(2x)的圖象的對(duì)稱軸是( 。
A.x=1B.x=$\frac{1}{2}$C.x=-$\frac{1}{2}$D.x=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列命題中,正確的是(  )
A.sin($\frac{3π}{2}$+α)=cosαB.常數(shù)數(shù)列一定是等比數(shù)列
C.若0<a<$\frac{1}$,則ab<1D.x+$\frac{1}{x}$≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)點(diǎn)P是曲線y=x3-$\sqrt{3}$x+$\frac{2}{3}$上的任意一點(diǎn),在P點(diǎn)處切線傾斜角a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.計(jì)算
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-9.60-(-3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(1.5)-2   (2)log225•log32$\sqrt{2}$•log59.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.521化為二進(jìn)制數(shù)是1000001001(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,左焦點(diǎn)為F(-1,0),過點(diǎn)D(0,2)且斜率為k的直線l交橢圓于A,B兩點(diǎn).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.雙曲線Γ中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,又Γ的實(shí)軸長為4,且一條漸近線為y=2x,求雙曲線Γ的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案