(本小題滿分14分)某養(yǎng)殖廠規(guī)定:飼料用完的第二天方可購(gòu)買飼料,并且每批飼料可供n天使用.已知該廠每天需要飼料200公斤,每公斤飼料的價(jià)格為1.8元,飼料的保管費(fèi)為平均每公斤每天0.03元(當(dāng)天用掉的飼料不計(jì)保管費(fèi)用),購(gòu)買飼料每次支付運(yùn)費(fèi)300元.

(1)求該廠多少天購(gòu)買一次飼料才能使平均每天支付的總費(fèi)用最。

(2)若提供飼料的公司規(guī)定,當(dāng)一次購(gòu)買飼料不少5噸時(shí)其價(jià)格可享受八五折優(yōu)惠(即原價(jià)的85%).問(wèn)該廠是否考慮利用此優(yōu)惠條件,請(qǐng)說(shuō)明理由.

(1)設(shè)該廠應(yīng)隔天購(gòu)買一次飼料,平均每天支付的總費(fèi)用為元…1分

∵飼料的保管費(fèi)用每天比前一天少200×0.03=6(元),

天飼料的保管費(fèi)用共是

                   …………………………4分

從而有                    ………………………5分

                                ………………………7分

當(dāng)且僅當(dāng),即時(shí),有最小值417  ………………………8分

即每隔10天購(gòu)買一次飼料才能使平均每天支付的總費(fèi)用最小.

(2)若廠家利用此優(yōu)惠條件,則至少25天購(gòu)買一次飼料,設(shè)該廠利用此優(yōu)惠條件,每隔天()購(gòu)買一次飼料,平均每天支付的總費(fèi)用為元,則

                                     …………………………10分

∴當(dāng)時(shí),,即函數(shù)上是增函數(shù)…………………12分

∴當(dāng)時(shí),取得最小值390

∵390<417,故該廠應(yīng)該利用此優(yōu)惠條件    …………………………………… 14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡(jiǎn)f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時(shí),求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對(duì)一應(yīng)季商品過(guò)去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤(rùn);

(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案