【題目】已知圓關于直線對稱且過點,直線的方程為:.

1)證明:直線與圓相交;

2)記直線與圓的兩個交點為,.

①若弦長,求實數(shù)的值;

②求面積的最大值及面積的最大時的值.

【答案】1)證明見解析;(2)①0,②2,.

【解析】

1)首先根據(jù)題中條件求出圓方程,再根據(jù)圓與直線的位置關系證明直線與圓相交;

2)①利用圓與直線所交弦長和圓的半徑求出參數(shù)即可,②根據(jù)弦長與點到直線距離公式列出的面積公式,即可求出最大面積,再根據(jù)最大面積求出直線方程中的參數(shù).

1)∵,

的垂直平分線為,

聯(lián)立得圓心坐標,

∴圓的方程為,

∵圓過點,

,

得到圓的方程

設直線的方程為,

聯(lián)立,

,

∴直線與圓相交;

2)記圓心到直線的距離為

①∵,

解得

,

解得,

時,三角形面積的最大值為2,

此時

解得.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,ABCD是正方形,O是正方形的中心,PO底面ABCD,底面邊長為a,EPC的中點.

(1)求證:平面PAC平面BDE

(2)若二面角EBDC30°,求四棱錐PABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)對一塊邊長8米的正方形場地ABCD進行改造,點E為線段BC的中點,點F在線段CDAD上(異于A,C),設(米),的面積記為(平方米),其余部分面積記為(平方米).

1)當(米)時,求的值;

2)求函數(shù)的最大值;

3)該場地中部分改造費用為(萬元),其余部分改造費用為(萬元),記總的改造費用為W(萬元),求W取最小值時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在梯形中,,.將梯形所在的直線旋轉一周而形成的曲面所圍成的幾何體的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線過點,且與軸、軸都交于正半軸,當直線與坐標軸圍成的三角形面積取得最小值時,求:

(1)直線的方程;

(2)直線l關于直線m:y=2x-1對稱的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務量統(tǒng)計圖,圖2是該省2018年1~4月快遞業(yè)務收入統(tǒng)計圖,下列對統(tǒng)計圖理解錯誤的是( )

A. 2018年1~4月的業(yè)務量,3月最高,2月最低,差值接近2000萬件

B. 2018年1~4月的業(yè)務量同比增長率均超過50%,在3月底最高

C. 從兩圖來看,2018年1~4月中的同一個月的快遞業(yè)務量與收入的同比增長率并不完全一致

D. 從1~4月來看,該省在2018年快遞業(yè)務收入同比增長率逐月增長

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位共有老、中、青職工430,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍。為了解職工身體狀況,現(xiàn)采用分層抽樣方法進行調查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圓錐的軸截面是等腰直角三角形,底面半徑為1,點是圓心,過頂點的截面與底面所成的二面角大小是.

1)求點到截面的距離;

2)點為圓周上一點,且,中點,求異面直線所成角的大小.(結果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖像與x軸交于,與y軸交于C點,且是等腰三角形.

1)求的解析式;

2)在AB之間的拋物線段上是否存在異于AB的點D,使的面積相等?若存在,求D點的坐標,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案