設(shè)P是雙曲線數(shù)學(xué)公式上一點(diǎn),雙曲線的一條漸近線方程為3x-2y=0,F(xiàn)1、F2分別是雙曲線左右焦點(diǎn).若|PF1|=5,則|PF2|=


  1. A.
    3或7
  2. B.
    1或9
  3. C.
    7
  4. D.
    9
D
分析:由雙曲線的方程、漸近線的方程求出a,由雙曲線的定義求出|PF2|.
解答:由雙曲線的方程、漸近線的方程可得,∴a=2.由雙曲線的定義可得||PF2|-5|=4,∴|PF2|=9,
故選D.
點(diǎn)評:本題考查雙曲線的定義和雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,由雙曲線的方程、漸近線的方程求出a是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省高三綜合測試數(shù)學(xué)理卷 題型:選擇題

設(shè)P是雙曲線上一點(diǎn),雙曲線的一條漸近線方程為3x-2y=O,F(xiàn)1、F2

   分別是雙曲線的左、右焦點(diǎn),若,則=(   )

    A. 1或5           B. 6           C. 7          D. 9

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆福建省高二第一學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:選擇題

設(shè)P是雙曲線上一點(diǎn),該雙曲線的一條漸近線方程是,

分別是雙曲線的左、右焦點(diǎn),若,則等于(     )

A.2           B.18             C.2或18           D.16

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆海南省高二年級第一學(xué)期期末考試?yán)砜茢?shù)學(xué)卷 題型:選擇題

設(shè)P是雙曲線上一點(diǎn),分別是雙曲線左右兩個焦點(diǎn),若,則=(     )

A.1        B.17            C.1或17              D.以上答案均不對

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年河南省南陽市唐河三中高二(下)期末數(shù)學(xué)模擬試卷(理科)(解析版) 題型:選擇題

設(shè)P是雙曲線上一點(diǎn),雙曲線的一條漸近線方程為3x-2y=O,F(xiàn)1、F2分別是雙曲線的左、右焦點(diǎn),若|PF1|=3,則|PF2|=( )
A.1或5
B.6
C.7
D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):8.2 雙曲線(解析版) 題型:選擇題

設(shè)P是雙曲線上一點(diǎn),該雙曲線的一條漸近線方程是3x+4y=0,F(xiàn)1,F(xiàn)2分別是雙曲線的左、右焦點(diǎn),若|PF1|=10,則|PF2|等于( )
A.2
B.18
C.2或18
D.16

查看答案和解析>>

同步練習(xí)冊答案